JEE Main & Advanced

Definition : Let A be a \[m\times n\] matrix. If we retain any \[r\] rows and \[r\] columns of A we shall have a square sub-matrix of order \[r\]. The determinant of the square sub-matrix of order \[r\] is called a minor of A order \[r\]. Consider any matrix A which is of the order of \[3\times 4\] say, \[A=\left| \begin{matrix} 1 & 3 & 4 & 5  \\ 1 & 2 & 6 & 7  \\ 1 & 5 & 0 & 1  \\ \end{matrix} \right|\]. It is \[3\times 4\] matrix so we can have minors of order 3, 2 or 1. Taking any three rows and three columns minor of order three. Hence minor of order \[3=\left| \,\begin{matrix} 1 & 3 & 4  \\ 1 & 2 & 6  \\ 1 & 5 & 0  \\ \end{matrix}\, \right|=0\]   Making two zeros and expanding above minor is zero. more...

A matrix A is said to be in Echelon form if either A is the null matrix or A satisfies the following conditions:   (1) Every non- zero row in A precedes every zero row.   (2) The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row.   If can be easily proved that the rank of a matrix in Echelon form is equal to the number of non-zero row of the matrix.   Rank of a matrix in Echelon form : The rank of a matrix in Echelon form is equal to the number of non-zero rows in that matrix.

A system of equations \[AX=B\] is called a homogeneous system if \[B=O\]. If \[B\ne O\], it is called a non-homogeneous system of equations. e.g., \[2x+5y=0\] \[3x-2y=0\]   is a homogeneous system of linear equations whereas the system of equations given by e.g., \[2x+3y=5\] \[x+y=2\]   is a non-homogeneous system of linear equations.   (1) Solution of Non-homogeneous system of linear equations   (i) Matrix method : If \[AX=B\], then \[X={{A}^{-1}}B\] gives a unique solution, provided A is non-singular.   But if A is a singular matrix i.e.,  if \[|A|=0\], then the system of equation \[AX=B\] may be consistent with infinitely many solutions or it may be inconsistent.   (ii) Rank method for solution of Non-Homogeneous system \[AX=B\]   (a) Write down A, B   (b) Write the augmented matrix \[[A:B]\]   (c) Reduce the augmented matrix to Echelon form by using elementary row operations.   (d) Find the number of more...

 In system of linear equations \[AX=B,\,A={{({{a}_{ij}})}_{n\times n}}\] is said to be   (i) Consistent (with unique solution) if \[|A|\ne 0\].   i.e., if \[A\] is non-singular matrix.   (ii) Inconsistent (It has no solution) if \[|A|=0\] and \[(adjA)\,B\] is a non-null matrix.   (iii) Consistent (with infinitely \[m\] any solutions) if \[|A|\,=\,0\] and \[(adj\,A)\,B\] is a null matrix.          

Every matrix satisfies its characteristic equation e.g. let A be a square matrix then \[|A-xI|=0\]is the characteristics equation of A. If \[{{x}^{3}}-4{{x}^{2}}-5x-7=0\] is the characteristic equation for A, then \[{{A}^{3}}-4{{A}^{2}}+5A-7I=0\].   Roots of characteristic equation for A are called Eigen values of A or characteristic roots of A or latent roots of A.   If \[\lambda \] is characteristic root of A, then \[{{\lambda }^{-1}}\]is characteristic root of \[{{A}^{-1}}\].

(1) Reflexion in the x-axis: If \[P'\,\,(x',y')\]is the reflexion of the point \[P(x,y)\]on the x-axis, then the matrix \[\left[ \begin{matrix} 1 & 0  \\ 0 & -1  \\\end{matrix} \right]\] describes the reflexion of a point \[P(x,y)\]in the x-axis.   (2) Reflexion in the y-axis    Here the matrix is \[\left[ \begin{matrix} -1 & 0  \\ 0 & 1  \\\end{matrix} \right]\]   (3) Reflexion through the origin   Here the matrix is \[\left[ \begin{matrix} -1 & 0  \\ 0 & -1  \\ \end{matrix} \right]\]   (4) Reflexion in the line  \[\mathbf{y=x}\]   Here the matrix is \[\left[ \begin{matrix} 0 & 1  \\ 1 & 0  \\ \end{matrix} \right]\]   (5) Reflexion in the line \[\mathbf{y=}-\mathbf{x}\]   Here the matrix is \[\left[ \begin{matrix} \,\,0 & -1  \\ -1 & \,\,0  \\ \end{matrix} \right]\]   (6) Reflexion in \[y=x\,\mathbf{tan\theta }\]   Here matrix is \[\left[ \begin{matrix} \cos 2\theta  & \sin 2\theta   \\ \sin more...

 We know that if \[x\] and \[y\] axis are rotated through an angle \[\theta \] about the origin the new coordinates are given by   \[x=X\,\cos \theta -Y\sin \theta \] and \[y=X\sin \theta +Y\cos \theta \]   \[\Rightarrow \left[ \begin{matrix} x  \\ y  \\ \end{matrix} \right]=\left[ \begin{matrix} \cos \theta  & -\sin \theta   \\ \sin \theta  & \cos \theta   \\ \end{matrix} \right]\,\left[ \begin{matrix} X  \\ Y  \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} \cos \theta  & -\sin \theta   \\ \sin \theta  & \cos \theta   \\ \end{matrix} \right]\]   is the matrix of rotation through an angle \[\theta \].  

If \[f:X\to Y\] is a function, defined on the set \[X,\] then the domain of the function \[f,\] written as Domf is the set of all independent variables \[x,\] for which the image \[f(x)\] is well defined element of \[Y,\] called the co-domain of \[f\].   Range of \[f:X\to Y\]is the set of all images \[{{72}^{o}}\] which belongs to \[Y,\] i.e., Range \[{{67.5}^{o}}\]\[\{f(x)\in Y:x\in X\}\,\subseteq Y\].   The domain and range of trigonometrical functions are tabulated as follows :
Trigonometrical Function   Domain   more...
In the right angled triangle \[OMP,\] we have base \[=OM=x,\] perpendicular \[=PM=y\] and hypotenuse \[=OP=r\]. We define the following trigonometric ratio which are also known as trigonometric function.       \[\sin \theta =\frac{\text{Perpendicular}}{\text{Hypotenues}}=\frac{y}{r}\]   \[\frac{2n\pi \pm A}{2}\]   \[\tan \theta =\frac{\text{Perpendicular}}{\text{Base}}=\frac{y}{x}\]   \[\cot \theta =\frac{\text{Base}}{\text{Perpendicular}}=\frac{x}{y}\]     \[\sec \theta =\frac{\text{Hypotenues}}{\text{Base}}=\frac{r}{x}\]   \[\text{cosec}\theta =\frac{\text{Hypotenues}}{\text{Perpendicular}}=\frac{r}{y}\]   (1) Relation between trigonometric ratios (functions)   (i) \[\frac{\sqrt{4-\sqrt{2}-\sqrt{6}}}{2\sqrt{2}}\]              (ii) \[\tan \theta .\cot \theta =1\]   (iii) \[\cos \theta .\sec \theta =1\]            (iv) \[\tan \frac{A}{2}\]  (v) \[\cot \theta =\frac{\cos \theta }{\sin \theta }\]   (2) Fundamental trigonometric identities   (i) \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]                        (ii) \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \]   (iii) \[1+{{\cot }^{2}}\theta =\text{cose}{{\text{c}}^{2}}\theta \]   (3) Sign of trigonometrical ratios or functions : Their signs depends on the quadrant in which the terminal side of the more...

Two angles are said to be allied when their sum or difference is either zero or a multiple of \[{{90}^{o}}\].    
Allied angles \[\to \] \[\sin \theta \] \[cos\theta \] \[tan\theta \]
more...

Archive



You need to login to perform this action.
You will be redirected in 3 sec spinner