Current Affairs JEE Main & Advanced

It is the most important tetrahalogen derivative of methane.   (1) Manufacture   (i) From methane :   \[C{{H}_{4}}+4C{{l}_{2}}\xrightarrow{400{}^\circ C}CC{{l}_{4}}+4HCl\]   (ii) From carbon disulphide :   \[C{{S}_{2}}+3C{{l}_{2}}\xrightarrow{Fe/{{I}_{2}}/AlC{{l}_{3}}}CC{{l}_{4}}+\underset{\text{monochloride}}{\mathop{\underset{\text{Sulphur}}{\mathop{{{S}_{2}}C{{l}_{2}}}}\,}}\,\]   \[{{S}_{2}}C{{l}_{2}}\] further reacts with \[C{{S}_{2}}\] to form more of carbon tetrachloride.   \[C{{S}_{2}}+2{{S}_{2}}C{{l}_{2}}\xrightarrow{{}}CC{{l}_{4}}+6S\]   Carbon tetrachloride is separated out by fractional distillation. It is washed with sodium hydroxide and then distilled to get a pure sample.   (iii) From propane :   \[{{C}_{3}}{{H}_{8}}+9C{{l}_{2}}\underset{\text{70-100}}{\mathop{\xrightarrow{\text{400}{}^\circ C}}}\,\underset{\text{(Liquid)}}{\mathop{\underset{\text{Carbon}\,\text{tetrachloride}}{\mathop{CC{{l}_{4}}}}\,}}\,+\underset{\text{(Solid)}}{\mathop{\underset{\text{Hexachloroethane}}{\mathop{{{C}_{2}}C{{l}_{6}}}}\,}}\,+8HCl\]   (2) Physical properties   (i) It is a colourless liquid having characteristic smell.   (ii) It is non-inflammable and poisonous. It has boiling point \[{{77}^{o}}C\].   (iii) It is insoluble in water but soluble in organic solvents.   (iv) It is an excellent solvent for oils, fats, waxes and greases.   (3) Chemical properties : Carbon tetrachloride is less reactive and inert to most organic reagents. However, the following reactions are observed.   (i) Reaction with steam (Oxidation) :   \[CC{{l}_{4}}+{{H}_{2}}O\xrightarrow{500{}^\circ C}\underset{\text{Phosgene (Carbonyl chloride)}}{\mathop{COC{{l}_{2}}}}\,+2HCl\]   (ii) Reduction :   \[CC{{l}_{4}}+2H\xrightarrow{Fe/{{H}_{2}}O}CHC{{l}_{3}}+HCl\]   (iii) Hydrolysis :   \[CC{{l}_{4}}+4KOH\xrightarrow{-4KCl}\underset{\text{Unstable}}{\mathop{[C{{(OH)}_{4}}]}}\,\]\[\xrightarrow{-2{{H}_{2}}O}C{{O}_{2}}\xrightarrow{2KOH}{{K}_{2}}C{{O}_{3}}+{{H}_{2}}O\]   (iv) Reaction with phenol (Reimer-tiemann reaction) :     (4) Uses   (i) It is used as a fire extinguisher under the name pyrene. The dense vapours form a protective layer on the burning objects and prevent the oxygen or air to come in contact with the burning objects.   (ii) It is used as a solvent for fats, oils, waxes and greases, resins, iodine etc.   (iii) It finds use in medicine as helmenthicide for elimination of hook worms.

(1) Methods of preparation of dihalides   (i) Methods of preparation of gemdihalide   (a) From alkyne (Hydrohalogenation) :   \[R-C\equiv C-H+HX\xrightarrow{{}}R-\underset{X}{\mathop{\underset{|}{\mathop{C}}\,}}\,=\underset{H}{\mathop{\underset{|}{\mathop{C}}\,}}\,-H\] \[\xrightarrow{+HX}R-\underset{X\,\,\,}{\overset{X\,\,\,}{\mathop{\underset{|}{\overset{|}{\mathop{C}}}\,-}}}\,C{{H}_{3}}\]   (b) From carbonyl compound :   \[RCHO+PC{{l}_{5}}\xrightarrow{{}}\underset{\text{ }\!\![\!\!\text{ Terminal}\,\text{dihalide }\!\!]\!\!\text{ }}{\mathop{RCHC{{l}_{2}}}}\,+POC{{l}_{3}}\]  
  • If ketone is taken internal dihalide formed.
  (ii) Methods of preparation of vicinal dihalide   (a) From alkene [By halogenation] :   \[R-CH=C{{H}_{2}}+C{{l}_{2}}\xrightarrow{{}}R-\underset{Cl\,\,\,\,}{\mathop{\underset{|}{\mathop{C}}\,H}}\,-\underset{Cl\,\,\,\,\,\,}{\mathop{\underset{|}{\mathop{C}}\,{{H}_{2}}}}\,\]   (b) From vicinal glycol :   \[\overset{R-CH-OH\,\,\,}{\mathop{\underset{\,\,\,\,\,\,C{{H}_{2}}-OH}{\mathop{|\,\,\,\,\,\,\,\,\,\,\,\,\,}}\,}}\,+2PC{{l}_{5}}\xrightarrow{{}}\overset{R-CH-Cl}{\mathop{\underset{\,\,\,\,\,\,\,\,\,\,C{{H}_{2}}-Cl}{\mathop{|\,\,\,\,\,}}\,}}\,\]\[\,\,\,\,+\,\,2HCl+2POC{{l}_{3}}\]   (2) Properties of dihalides   (i) Physical properties   (a) Dihalide are colourless with pleasant smell liquid. Insoluble in water, soluble in organic solvent.   (b) M.P and B.P µ -molecular mass.   (c) Reactivity of vicinal dihalides > Gem dihalide.   (ii) Chemical properties of dihalide   (a) Reaction with aqueous KOH :   \[RCH{{X}_{2}}+2KOH(aq.)\xrightarrow[-KX]{}RCH{{(OH)}_{2}}\]\[\xrightarrow{-{{H}_{2}}O}RCHO\]   (b) Reaction with alcoholic KOH :   \[RC{{H}_{2}}-CH{{X}_{2}}\underset{-(KX+{{H}_{2}}O)}{\mathop{\xrightarrow{\text{Alc}\text{.}\,KOH}}}\,R-\overset{H}{\mathop{\overset{|}{\mathop{C}}\,}}\,=\overset{X}{\mathop{\overset{|}{\mathop{C}}\,}}\,-H\]\[\underset{-(NaX+N{{H}_{3}})}{\mathop{\xrightarrow{NaN{{H}_{2}}}}}\,R-C\equiv CH\]   \[R-\underset{X\ \ }{\mathop{\underset{|\ \ \ }{\mathop{CH}}\,}}\,-\underset{X\ \ \ \ }{\mathop{\underset{|\ \ \ \ \ \ \ }{\mathop{C{{H}_{2}}}}\,}}\,\xrightarrow{Alc.KOH}R-C\equiv C-H+2KX+2{{H}_{2}}O\]   (c) Reaction with Zn dust  
  • Gem halide (di) form higer symmetrical alkene.
 
  • Vicinal dihalide form respective alkene.
  (d) Reaction with KCN :   \[R-CH{{X}_{2}}+2KCN\xrightarrow[-2KX]{}RCH{{(CN)}_{2}}\]\[\underset{\text{Hydrolysis}}{\mathop{\xrightarrow{{{H}_{3}}{{O}^{\oplus }}}}}\,RCH{{(COOH)}_{2}}\]   (e) Other substitution reaction  
  • \[\underset{C{{H}_{2}}-X}{\overset{C{{H}_{2}}-X}{\mathop{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}}}\,\xrightarrow{N{{H}_{3}}/373K}\underset{\text{Ethylene diamine}}{\mathop{\underset{C{{H}_{2}}-N{{H}_{2}}}{\overset{C{{H}_{2}}-N{{H}_{2}}}{\mathop{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}}}\,}}\,\]
 
  • \[\underset{C{{H}_{2}}-X}{\overset{C{{H}_{2}}-X}{\mathop{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}}}\,\xrightarrow{2C{{H}_{3}}COONa}\underset{C{{H}_{2}}-OCOC{{H}_{3}}}{\overset{C{{H}_{2}}-OCOC{{H}_{3}}}{\mathop{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}}}\,+2NaX.\]
       

(1) Physical properties   (i) \[C{{H}_{3}}F,C{{H}_{3}}Cl,C{{H}_{3}}Br\] and \[{{C}_{2}}{{H}_{5}}Cl\] are gases at room temperature. The alkyl halides upto \[{{C}_{18}}\]are colourless liquids while higher members are colourless solids.   (ii) Alkyl halides are insoluble in water but soluble in organic solvents.   (iii) They burn on copper wire with green edged flame (Beilstein test for halogens).   (iv) Alkyl bromides and iodides are heavier than water. Alkyl chlorides and fluorides are lighter than water.   (v) Alkyl iodides become violet or brown in colour on exposure as they decompose in light.   \[2RI\xrightarrow{\text{Light}}R-R+{{I}_{2}}\]   (vi) For a given alkyl group, the boiling points of alkyl halides are in the order \[RI>RBr>RCl>RF\] and for a given halogen the boiling points of alkyl halides increase with the increase of the size of the alkyl group.   (vii) Alkyl halides are in general toxic compounds and bring unconsciousness when inhaled in large amounts.   (2) Chemical properties : The alkyl halides are highly reactive, the order of reactivity is,   Iodide > Bromide > Chloride (Nature of the halogen atom)   Tertiary > Secondary > Primary (Type of the halogen atom)   Amongst the primary alkyl halide, the order of reactivity is : \[C{{H}_{3}}X>{{C}_{2}}{{H}_{5}}X>{{C}_{3}}{{H}_{7}}X\], etc.   The high reactivity of alkyl halides can be explained in terms of the nature of \[C-X\] bond which is highly polarised covalent bond due to large difference in the electronegativities of carbon and halogen atoms. The halogen is far more electronegative than carbon and tends to pull the electrons away from carbon, i.e., halogen acquires a small negative charge and carbon a small positive charge.   \[-\overset{{{\delta }^{+}}}{\mathop{C}}\,-\overset{{{\delta }^{-}}}{\mathop{X}}\,\]   This polarity is responsible for reactions,   (i) Nucleophilic substitution reactions (ii) Elimination reactions   (i) Nucleophilic substitution (SN) reactions : The \[{{C}^{{{\delta }^{+}}}}\] site is susceptible to attack by nucleophiles (An electron rich species).   \[N{{u}^{-}}+R-X\xrightarrow{{}}Nu-R+{{X}^{-}}\]   \[R-X\underset{\text{Slow}}{\mathop{\xrightarrow{-{{X}^{-}}}}}\,{{R}^{+}}\underset{\text{Fast}}{\mathop{\xrightarrow{N{{u}^{-}}}}}\,R-Nu\] (\[{{S}_{{{N}^{1}}}}\]reaction)   \[N{{u}^{-}}+R-X\xrightarrow{\text{Slow}}\underset{\text{Transition}\,\text{state}}{\mathop{Nu.....R.....X}}\,\xrightarrow{\text{Fast}}Nu-R+{{X}^{-}}\] (\[{{S}_{{{N}^{2}}}}\] reaction)    Examples of \[{{S}_{N}}\] reactions,   (a) Hydrolysis :   \[\underset{\text{Alkyl}\,\text{halide}}{\mathop{RX}}\,+AgOH\xrightarrow{{}}\underset{\text{Alcohol}}{\mathop{ROH}}\,+AgX\]   \[RX+KOH(aq)\xrightarrow{{}}ROH+KX\]  
  • With the help of this reaction an alkene can be converted into alcohol. Alkene is first reacted with HBr to form alkyl bromide and then hydrolysis is done.
  \[\underset{\text{Ethylene}}{\mathop{C{{H}_{2}}=C{{H}_{2}}}}\,\xrightarrow{HBr}\underset{\text{Ethyl bromide}}{\mathop{C{{H}_{3}}C{{H}_{2}}Br}}\,\xrightarrow{AgOH}\underset{\text{Ethyl alcohol}}{\mathop{C{{H}_{3}}C{{H}_{2}}OH}}\,\]   (b) Reaction with alkoxides or dry silver oxide :   \[RX+NaOR'\xrightarrow{Heat}\underset{\text{Unsym}\text{.}\,\text{ether}}{\mathop{ROR'}}\,+NaX\]   \[2RX+A{{g}_{2}}O\xrightarrow{{}}\underset{\text{Sym}\text{.}\,\text{ether}}{\mathop{R-O-R}}\,+2AgX\]   (c) Reaction with sodium or potassium hydrogen sulphide :   \[RX+\underset{\text{sulphide}}{\mathop{\underset{\text{Sodium}\,\text{hydrogen}\,}{\mathop{NaSH}}\,}}\,\xrightarrow{{}}\underset{\begin{smallmatrix} \text{or}\,\text{Alkanethiol} \\  \text{or Alkyl mercaptan}  \end{smallmatrix}}{\mathop{\underset{\text{Thioalcohol }}{\mathop{RSH}}\,}}\,+NaX\]   (d) Reaction with alcoholic potassium cyanide and silver cyanide :   \[RX+KCN\xrightarrow{Alcohol}\underset{\begin{smallmatrix} \text{Alkyl}\,\text{cyanide}\,\text{or} \\  \text{Alkane nitrile} \end{smallmatrix}}{\mathop{RCN}}\,+KX\]   (e) Reaction with potassium nitrite or silver nitrite :   \[RX+K-O-N=O\xrightarrow{\Delta }\underset{\text{Alkyl}\,\text{nitrite}}{\mathop{R-O-N=O}}\,+KX\]     (f) Reaction with ammonia :   \[{{C}_{2}}{{H}_{5}}Br+H-N{{H}_{2}}\xrightarrow{{}}\underset{\text{Ethylamine(p}\text{.)}}{\mathop{{{C}_{2}}{{H}_{5}}N{{H}_{2}}}}\,+HBr\]   \[{{C}_{2}}{{H}_{5}}N{{H}_{2}}+Br{{C}_{2}}{{H}_{5}}\xrightarrow{{}}\underset{\text{Diethylamine(sec}\text{.)}}{\mathop{{{C}_{2}}{{H}_{5}}NH{{C}_{2}}{{H}_{5}}}}\,+HBr\]   \[{{({{C}_{2}}{{H}_{5}})}_{2}}NH+Br{{C}_{2}}{{H}_{5}}\xrightarrow{{}}\underset{\text{Triethylamine(tert}\text{.)}}{\mathop{{{({{C}_{2}}{{H}_{5}})}_{3}}N}}\,+HBr\]   \[{{({{C}_{2}}{{H}_{5}})}_{3}}N+Br{{C}_{2}}{{H}_{5}}\xrightarrow{{}}\underset{\begin{smallmatrix} \text{Tetraethyl}\,\text{ammonium} \\  \text{bromide(Quaternary)} \end{smallmatrix}}{\mathop{{{({{C}_{2}}{{H}_{5}})}_{4}}\overset{+\,\,\,\,\,-}{\mathop{NBr}}\,}}\,\]   (g) Reaction with silver salts of fatty acids :   \[R'COOAg+XR\xrightarrow{{}}\underset{\text{Ester}}{\mathop{R'COOR}}\,\,+AgX\]   (h) Reaction with sodium acetylide :   \[RX+\underset{\text{Sodium acetylide}}{\mathop{NaC\equiv CH}}\,\xrightarrow{{}}\underset{\text{Alkyne}}{\mathop{R-C\equiv CH}}\,+NaX\]   (i) Reaction with sodium or potassium sulphide :    \[2RX+N{{a}_{2}}S\xrightarrow{{}}\underset{\text{Thioether}}{\mathop{R-S-R}}\,+2NaX\]   Thioethers can also be obtained by   \[RX-NaSR'\xrightarrow{{}}R-S-R'+NaX\]   \[{{C}_{2}}{{H}_{5}}Br+NaSC{{H}_{3}}\xrightarrow{{}}\underset{\text{Ethyl methyl more...

Group I : When dil. HCl is added to original solution, insoluble chlorides of lead, silver mercurous mercury are precipitated.   \[Pb{{(N{{H}_{3}})}_{2}}+2HCl\xrightarrow[\,]{}PbC{{l}_{2}}+2HN{{O}_{3}}\];   \[AgN{{O}_{3}}+HCl\xrightarrow{\,}AgCl+HN{{O}_{3}}\]   \[Hg{{(N{{O}_{3}})}_{2}}+2HCl\xrightarrow{\,}HgC{{l}_{2}}+2HN{{O}_{3}}\]   \[\mathbf{P}{{\mathbf{b}}^{\mathbf{2+}}}\](lead)   (i) \[PbC{{l}_{2}}\]is soluble in hot water and on cooling white crystals are again formed.   (ii) The solution of \[PbC{{l}_{2}}\] gives a yellow precipitate with potassium chromate solution which is insoluble in acetic acid but soluble in sodium hydroxide.   \[PbC{{l}_{2}}+{{K}_{2}}Cr{{O}_{4}}\xrightarrow{\,}\underset{\text{yellow ppt}\text{.}}{\mathop{PbCr{{O}_{4}}}}\,+2KCl\];   \[PbCr{{O}_{4}}+4NaOH\xrightarrow{\,}N{{a}_{2}}Pb{{O}_{2}}+N{{a}_{2}}Cr{{O}_{4}}+2{{H}_{2}}O\]    (iii) The solution of \[PbC{{l}_{2}}\]forms a yellow precipitate with potassium iodide solution.   \[PbC{{l}_{2}}+2KI\xrightarrow{\,}\underset{\text{Yellow}\,\,\text{ppt}.}{\mathop{Pb{{I}_{2}}}}\,+2KCl\]   (iv) White precipitate of lead sulphate is formed with dilute \[{{H}_{2}}S{{O}_{4}}.\] The precipitate is soluble in ammonium acetate,     \[PbC{{l}_{2}}+{{H}_{2}}S{{O}_{4}}\xrightarrow{\,}PbS{{O}_{4}}+\,2HCl\];   \[PbS{{O}_{4}}+2C{{H}_{3}}COON{{H}_{4}}\xrightarrow{\,}Pb{{(C{{H}_{3}}COO)}_{2}}+{{(N{{H}_{4}})}_{2}}S{{O}_{4}}\]   \[A{{g}^{+}}\](silver)   (i) \[AgCl\] dissolves in ammonium hydroxide, \[AgCl+2N{{H}_{4}}OH\xrightarrow{\,}\underset{\text{chloride}}{\mathop{\underset{\text{Diammine silver (I)}}{\mathop{Ag{{(N{{H}_{3}})}_{2}}Cl+2{{H}_{2}}O}}\,}}\,\]   (ii) On adding dilute \[HN{{O}_{3}}\] to the above solution, white precipitate is again obtained   \[\begin{align} & Ag{{(N{{H}_{3}})}_{2}}Cl+2HN{{O}_{3}}\xrightarrow{\,}AgCl+2N{{H}_{4}}N{{O}_{3}} \\  &  ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{White ppt}\text{.} \\  \end{align}\]   (iii) On adding KI to the complex solution, yellow precipitate is obtained.   \[Ag{{(N{{H}_{3}})}_{2}}Cl+KI\xrightarrow{\,}AgI+KCl+2N{{H}_{3}}\]   \[\mathbf{Hg}_{\mathbf{2}}^{\mathbf{2+}}\](mercurous)   (i) \[H{{g}_{2}}C{{l}_{2}}\] turns black with \[N{{H}_{4}}OH\], \[H{{g}_{2}}C{{l}_{2}}+2N{{H}_{4}}OH\xrightarrow{{}}\underbrace{Hg+Hg(N{{H}_{2}})Cl}_{\text{Black}}+N{{H}_{4}}Cl+2{{H}_{2}}O\]     (ii) The black residue dissolves in aqua-regia forming mercuric chloride.   \[3HCl+HN{{O}_{3}}\xrightarrow{\,}NOCl+2{{H}_{2}}O+2Cl\]   \[2Hg(N{{H}_{2}})Cl+6Cl\xrightarrow{\,}2HgC{{l}_{2}}+4HCl+{{N}_{2}}\]   \[Hg+2Cl\xrightarrow{\,}HgC{{l}_{2}}\]   (iii) The solution of \[HgC{{l}_{2}}\] forms white or slate-coloured precipitate with stannous chloride.   \[2HgC{{l}_{2}}+SnC{{l}_{2}}\xrightarrow{\,}\underset{\text{white ppt}\text{.}}{\mathop{H{{g}_{2}}C{{l}_{2}}}}\,+SnC{{l}_{4}}\]   \[H{{g}_{2}}C{{l}_{2}}+SnC{{l}_{2}}\xrightarrow{\,}\underset{\text{Grey ppt}\text{.}}{\mathop{2Hg}}\,+SnC{{l}_{4}}\]   (iv) The solution of \[HgC{{l}_{2}}\] with copper turning forms a grey deposit.   \[HgC{{l}_{2}}+Cu\xrightarrow{\,}\underset{\text{Grey}\,\text{ppt}\text{.}}{\mathop{Hg}}\,+CuC{{l}_{2}}\]   Group II : When hydrogen sulphide is passed in acidified solution, the radicals of second group are precipitated as sulphides. The precipitate is treated with yellow ammonium sulphide. The sulphides of IIB are first oxidised to higher sulphides which then dissolve to form thio-compounds.   \[A{{g}_{2}}{{S}_{3}}+2{{(N{{H}_{4}})}_{2}}{{S}_{2}}\xrightarrow{\,}2{{(N{{H}_{4}})}_{2}}S+A{{s}_{2}}{{S}_{5}}\]   \[S{{b}_{2}}{{S}_{3}}+2{{(N{{H}_{4}})}_{2}}{{S}_{2}}\xrightarrow{\,}2{{(N{{H}_{4}})}_{2}}S+S{{b}_{2}}{{S}_{5}}\]   \[SnS+{{(N{{H}_{4}})}_{2}}{{S}_{2}}\xrightarrow{\,}{{(N{{H}_{4}})}_{2}}S+Sn{{S}_{2}}\]   \[A{{s}_{2}}{{S}_{5}}+3(N{{H}_{4}})S\xrightarrow{{}}\underset{\text{thioarsenate}}{\mathop{\underset{\text{Ammonium}}{\mathop{2{{(N{{H}_{4}})}_{3}}As{{S}_{4}}}}\,}}\,\]   \[S{{b}_{2}}{{S}_{5}}+3{{(N{{H}_{4}})}_{2}}S\xrightarrow{{}}\underset{\text{thioantimonate}}{\mathop{\underset{\text{Ammonium}}{\mathop{2{{(N{{H}_{4}})}_{2}}Sb{{S}_{4}}}}\,}}\,\]   \[Sn{{S}_{2}}+{{(N{{H}_{4}})}_{2}}S\xrightarrow{{}}\underset{\text{thiostannate}}{\mathop{\underset{\text{Ammonium}}{\mathop{{{(N{{H}_{4}})}_{2}}Sn{{S}_{3}}}}\,}}\,\]   All the three are soluble.   In case, the precipitate does not dissolve in yellow ammonium sulphide, it may be either \[HgS\] or \[PbS\] or \[B{{i}_{2}}{{S}_{3}}\] or \[CuS\]or \[CdS.\] The precipitate is heated with dilute \[HN{{O}_{3}}.\] Except \[HgS\], all other sulphides of \[IIA\] are soluble.   \[3PbS+8HN{{O}_{3}}\to 3Pb{{(N{{O}_{3}})}_{2}}+2NO+3S+4{{H}_{2}}O\]   \[B{{i}_{2}}{{S}_{3}}+8HN{{O}_{3}}\to 2Bi{{(N{{O}_{3}})}_{3}}+2NO+3S+4{{H}_{2}}O\]   \[3CuS+8HN{{O}_{3}}\to 3Cu{{(N{{O}_{3}})}_{2}}+2NO+3S+4{{H}_{2}}O\]   \[3CdS+8HN{{O}_{3}}\to 3Cd{{(N{{O}_{3}})}_{2}}+2NO+3S+4{{H}_{2}}O\]   \[\mathbf{H}{{\mathbf{g}}^{\mathbf{+}}}\](mercuric)   \[HgS\] is dissolved in aqua-regia,    \[3HgS+2HN{{O}_{3}}+6HCl\to 3HgC{{l}_{2}}+3S+2NO+4{{H}_{2}}O\]   The solution is divided into two parts:   Part I : Stannous chloride solution reduces \[HgC{{l}_{2}}\] first into white \[H{{g}_{2}}C{{l}_{2}}\] and then to grey metallic mercury.   Part II : Copper displaces \[Hg\] from \[HgC{{l}_{2}}\] which gets coated on copper turnings as a shining deposit.   \[\mathbf{P}{{\mathbf{b}}^{\mathbf{2+}}}\](lead)   In case the sulphide dissolves in dilute \[HN{{O}_{3}},\] a small part of the solution is taken. Dilute \[{{H}_{2}}S{{O}_{4}}\] is added. If lead is present, a white precipitate of lead sulphate appears, \[Pb{{(N{{O}_{3}})}_{2}}+{{H}_{2}}S{{O}_{4}}\to \underset{\text{(White ppt}\text{.)}\,\,\,\,\,}{\mathop{PbS{{O}_{4}}+}}\,2HN{{O}_{3}}\]   In absence of lead, the remaining solution is made alkaline by the addition of excess of \[N{{H}_{4}}OH.\] Bismuth forms a white precipitat of \[Bi{{(OH)}_{3}},\] copper forms a deep blue coloured solution while cadmium forms a colourless soluble complex,   \[\begin{align}& Bi{{(N{{O}_{3}})}_{3}}+3N{{H}_{4}}OH\xrightarrow{}Bi{{(OH)}_{3}}+3N{{H}_{4}}N{{O}_{3}} \\ & \text{ White ppt}\text{.} \\ \end{align}\]    \[\begin{align}  & Cu{{(N{{O}_{3}})}_{2}}+4N{{H}_{4}}OH\xrightarrow{\,}[Cu{{(N{{H}_{3}})}_{4}}]\,{{(N{{O}_{3}})}_{2}}+4{{H}_{2}}O; \\ & \text{                                         Tetrammine cupric nitrate} \\  & \text{                                            (deep blue solution)} \\ \end{align}\]   \[\begin{align}  & Cd{{(N{{O}_{3}})}_{2}}+4N{{H}_{4}}OH\xrightarrow{\,}[Cd\,{{(N{{H}_{3}})}_{4}}]\,{{(N{{O}_{3}})}_{2}}+4{{H}_{2}}O \\  & more...

Volumetric analysis is a quantitative analysis. It involves the measurement of the volume of a known solution required to bring about the completion of the reaction with a measured volume of the unknown solution.    Titration : The process of addition of the known solution from the burette to the measured volume of solution of the substance to be  estimated until the reaction between the two is just complete, is termed as titration. Thus, a titration involves two solutions;   (i) Unknown solution : The solution consisting the substance to be estimated is termed unknown solution. The substance is termed titrate.   (ii) Standard solution : The solution in which an accurately known amount of the reagent (titrant) has been dissolved in a known volume of the solution is termed standard solution. There are two types of reagents (titrants) :   (a) Primary standards : These can be accurately weighed and their solutions are not to be standardised before use. Oxalic acid \[({{H}_{2}}{{C}_{2}}{{O}_{4}}.2{{H}_{2}}O)\], potassium dichromate \[({{K}_{2}}C{{r}_{2}}{{O}_{7}})\], silver nitrate \[(AgN{{O}_{3}})\], copper sulphate \[(CuS{{O}_{4}}.5{{H}_{2}}O)\], ferrous ammonium sulphate \[[FeS{{O}_{4}}{{(N{{H}_{4}})}_{2}}S{{O}_{4}}.6{{H}_{2}}O]\], sodium thiosulphate \[(N{{a}_{2}}{{S}_{2}}{{O}_{3}}.5{{H}_{2}}O)\], etc., are the examples of primary standards.   (b) Secondary standards : The solutions of these reagents are to be standardised before use as these cannot be weighed accurately. The examples are sodium hydroxide \[(NaOH)\], potassium hydroxide \[(KOH)\], hydrochloric acid \[(HCl)\], sulphuric acid \[({{H}_{2}}S{{O}_{4}})\], potassium permanganate \[(KMn{{O}_{4}})\], iodine, etc.   Law of equivalence : It is applied in all volumetric estimations. According to it, the chemical substances react in the ratio of their chemical equivalent masses.   \[\frac{\text{Mass of substance }A}{\text{Mass of substance }B}=\frac{\text{Chemical equivalent mass of }A}{\text{Chemical equivalent mass of }B}\]   or \[\frac{\text{Mass of substance }A}{\text{Chemical equivalent mass of }A}\]\[=\frac{\text{Mass of substance }B}{\text{Chemical equivalent mass of }B}\]        or gram equivalent of \[A=\]gram equivalent of \[B\]   or milli-gram equivalent of  \[A=\] milli-gram equivalent of \[B\]   The point at which the amounts of the two reactants are just equivalent is known as equivalence point or end point. An auxiliary substance which helps in the usual detection of the completion of the titration or equivalence point or end point is termed as indicator, i.e., substances which undergo some easily detectable changes at the equivalence point are used as indicators.   Methods of expressing concentrations of solutions   The concentration of a solution can be expressed in various ways.   (1) Percent by mass   (2) Molarity   (3) molality   (4) Mole fraction   (5) Normality   Types of titrations : Titrations can be classified as :   (1) Acid base titrations or acidimetry and alkalimetry   (2) Oxidation reduction titrations or redox titrations   (3) Precipitation titrations   (4) Complexometric titrations.   (1) Acid-base titrations : When the strength of an acid is determined with the help of a standard solution of base, it is known as acidimetry. Similarly, when the strength of a base (alkali) is determined with the help of a standard solution of an acid, it is known as alkalimetry.  Both these titrations involve neutralisation more...

It involves the following steps : (1) Preliminary tests (2) Wet tests for acid radicals and (3) Wet tests for basic radicals.   (1) Preliminary tests   (i) Physical examination :  It involves the study of colour, smell, density etc.    
Colour Salt
Black Oxides : \[Mn{{O}_{2}},FeO,CuO,C{{o}_{3}}{{O}_{4}}\], \[N{{i}_{2}}{{O}_{3}}\] Sulphides : \[A{{g}_{2}}S,CuS,C{{u}_{2}}S,FeS,CoS,NiS\], \[PbS,HgS\],\[B{{i}_{2}}{{S}_{3}}\] (blackish brown)
Blue   Hydrated \[CuS{{O}_{4}}\], anhydrous \[CoS{{O}_{4}}\]  
Orange   \[K{{O}_{2}}\], some dichromate \[({{K}_{2}}C{{r}_{2}}{{O}_{7}}),S{{b}_{2}}{{S}_{3}}\], ferricyanides  
Green   Nickel salts, hydrated ferrous salts, potassium permanganate \[(KMn{{O}_{4}})\], some copper (II) salts  
Brownish yellow   \[SnS\]  
Dark brown   \[Pb{{O}_{2}},A{{g}_{2}}O,CdO,F{{e}_{2}}{{O}_{3}},CuCr{{O}_{4}},FeC{{l}_{3}}\] (but yellow in aq. solution)  
Pale brown   \[MnC{{O}_{3}}\]  
Light pink   more...
(1) Colourless gases   (i)  Tests for \[\mathbf{C}{{\mathbf{O}}_{\mathbf{2}}}\] : It is colourless and odourless gas. It gives white ppt. with lime water which dissolves on passing excess of \[C{{O}_{2}}\]. \[\underset{Lime\,water}{\mathop{Ca{{(OH)}_{2}}}}\,+C{{O}_{2}}\to \underset{White\,ppt.}{\mathop{CaC{{O}_{3}}}}\,\downarrow +{{H}_{2}}O\]     \[\underset{White\,ppt.}{\mathop{CaC{{O}_{3}}}}\,+\underset{Excess}{\mathop{C{{O}_{2}}}}\,+{{H}_{2}}O\to \underset{So\operatorname{lub}le}{\overset{{}}{\mathop{Ca{{(HC{{O}_{3}})}_{2}}}}}\,\]   (ii) Test for CO :  It is colourless and odourless gas. It burns with a blue flame. \[2CO+{{O}_{2}}\to 2C{{O}_{2}}\]        (iii) Test for \[{{\mathbf{O}}_{\mathbf{2}}}\] : It is colourless and odourless gas. It rekindles a glowing splinter.   (iv) Tests for \[{{\mathbf{H}}_{\mathbf{2}}}\mathbf{S}\] : It is a colourless gas with a smell of rotten eggs. It turns moist lead acetate paper black.   \[{{(C{{H}_{3}}COO)}_{2}}Pb+{{H}_{2}}S\to 2C{{H}_{3}}COOH+\underset{Black}{\mathop{PbS}}\,\]   (v) Tests for \[\mathbf{S}{{\mathbf{O}}_{\mathbf{2}}}\] : It is a colourless gas with a suffocating odour of burning sulphur. It turns acidified \[{{K}_{2}}C{{r}_{2}}{{O}_{7}}\] solution green.  \[3S{{O}_{2}}+{{K}_{2}}C{{r}_{2}}{{O}_{7}}+{{H}_{2}}S{{O}_{4}}\to {{K}_{2}}S{{O}_{4}}+\underset{Green}{\mathop{C{{r}_{2}}{{(S{{O}_{4}})}_{3}}}}\,+{{H}_{2}}O\]   (vi) Tests for \[\mathbf{N}{{\mathbf{H}}_{\mathbf{3}}}\]: It is a colourless gas with a characteristic ammonical smell. It gives white fumes of \[N{{H}_{4}}Cl\] with \[HCl\], \[N{{H}_{3}}+HCl\to \underset{White\,fumes}{\mathop{N{{H}_{4}}Cl}}\,\]. With Nessler’s reagents, it gives brown ppt.   \[\underset{Nessler's\ \,reagent}{\mathop{2{{K}_{2}}\left[ Hg{{I}_{4}} \right]}}\,\ +N{{H}_{3}}+KOH\to \underset{\underset{(Brown\,ppt)}{\mathop{Iodine\,\text{of M}illon's\,base}}\,}{\mathop{N{{H}_{2}}HgOHgI}}\,+7KI+2{{H}_{2}}O\]   It gives deep blue colour with \[CuS{{O}_{4}}\] solution, \[CuS{{O}_{4}}+4N{{H}_{3}}\to \underset{Deep\,blue}{\mathop{\left[ Cu{{(N{{H}_{3}})}_{4}} \right]S{{O}_{4}}}}\,\]. \[N{{H}_{3}}\] dissolves in water to give \[N{{H}_{4}}OH,\] which being basic, turns red litmus blue, \[N{{H}_{3}}+{{H}_{2}}O\to N{{H}_{4}}OH\]\[\rightleftharpoons \]\[NH_{4}^{+}+O{{H}^{-}}\].   (vii) Tests for HCl gas : It is colourless gas with a pungent irritating smell.  It turns moist blue litmus paper red i.e., it is acidic in nature. It gives white ppt. with \[AgN{{O}_{3}}\] solution. This white ppt. is soluble in \[N{{H}_{4}}OH.\] \[HCl+AgN{{O}_{3}}\to \underset{White\,ppt.}{\mathop{AgCl}}\,+HN{{O}_{3}}\]; \[AgCl+2N{{H}_{4}}OH\to \underset{\text{Soluble}}{\mathop{\left[ Ag{{(N{{H}_{3}})}_{2}} \right]}}\,\ +2{{H}_{2}}O\].   (viii) Test for \[C{{H}_{3}}COOH\] vapours : These vapours are colourless with a vinegar like smell.   (2) Coloured gases   (i) Tests for \[\mathbf{C}{{\mathbf{l}}_{\mathbf{2}}}\]:  It is a greenish yellow gas with a pungent smell. In small quantity it appears almost colourless. It bleaches a moist litmus paper, \[C{{l}_{2}}+{{H}_{2}}O\to 2HCl+\left[ O \right]\]; \[Colour+\left[ O \right]\to Colourless.\] Blue litmus paper first turns red and then becomes colourless. (ii)  Tests for \[\mathbf{B}{{\mathbf{r}}_{\mathbf{2}}}\] : Brown vapours with a pungent smell. It turns moist starch paper yellow.   (iii) Tests for \[{{\mathbf{I}}_{\mathbf{2}}}\] : Violet vapours with a pungent smell. It turns moist starch paper blue.   (iv) Tests for \[\mathbf{N}{{\mathbf{O}}_{\mathbf{2}}}\]: Brown coloured pungent smelling gas. It turns moist starch KI paper blue   \[2KI+2N{{O}_{2}}\to 2KN{{O}_{2}}+{{I}_{2}}\];  \[{{I}_{2}}+Starch\to Blue\,colour.\]   It turns ferrous sulphate solution black,   \[3FeS{{O}_{4}}+N{{O}_{2}}+{{H}_{2}}S{{O}_{4}}\to F{{e}_{2}}{{(S{{O}_{4}})}_{3}}+\underset{Black\,brown}{\mathop{FeS{{O}_{4}}.\,NO}}\,+{{H}_{2}}O\]  

General characteristics of Halo-Alkenes (1) Organic compounds in which halogen atom \[(F,Cl,Br,I)\] is directly linked with saturated carbon atom are known as halo-alkanes. General formula is \[{{C}_{n}}{{H}_{2n+2-m}}{{X}_{m}}\] (\[X=F,Cl,Br,I\]) and \[m=\text{no}\text{.}\]of halogen atom; \[n=\text{no}\text{.}\]of carbon atoms. (2) Depending on the number of halogen atoms present in the halogen derivative, these are termed as mono-, di-, tri-, tetra-, and polyhalogen derivatives. \[\left[ \underset{\text{Methane}}{\mathop{C{{H}_{4}}}}\,\underset{+X}{\mathop{\xrightarrow{-H}}}\,\underset{\text{Mono}}{\mathop{C{{H}_{3}}-X}}\,\underset{+X}{\mathop{\xrightarrow{-H}}}\,\underset{\text{Di}}{\mathop{C{{H}_{2}}-{{X}_{2}}}}\,\underset{+X}{\mathop{\xrightarrow{-H}}}\,\underset{\text{Tri}}{\mathop{CH-{{X}_{3}}}}\,\underset{+X}{\mathop{\xrightarrow{-H}}}\,\underset{\text{Tetra}}{\mathop{C-{{X}_{4}}}}\, \right]\] (i) Monohalogen derivatives are termed as alkyl halides. Example: \[\underset{\text{Methyl}\,\text{chloride}}{\mathop{C{{H}_{3}}Cl}}\,\] \[\underset{\text{Ethyl}\,\text{bromide}}{\mathop{{{C}_{2}}{{H}_{5}}Br}}\,\] \[\underset{\text{Propyl}\,\text{iodide}}{\mathop{{{C}_{3}}{{H}_{7}}I}}\,\] Monohalogen derivatives or alkyl halides are classified as primary (1°), secondary (2°) or tertiary (3°) depending upon whether the halogen atom is attached to primary, secondary or tertiary carbon atoms.             (ii) The dihalogen derivatives are mainly of three types (a) Gem-dihalides: In these derivatives both the halogen atoms are attached to the same carbon atom. These are also called alkylidene halides. (b) Vic-dihalides : In these derivatives, the halogen atoms are attached to adjacent (Vicinal) carbon atoms. These are also termed as alkylene halides.             \[\underset{\text{Ethylene}\,\text{chloride}}{\mathop{C{{H}_{2}}Cl.C{{H}_{2}}Cl}}\,\] ;             \[\underset{\text{Propylene}\,\text{chloride}}{\mathop{C{{H}_{3}}CHCl.C{{H}_{2}}Cl}}\,\] (c) a-w halides (Terminal dihalides): In these derivatives, the halogen atoms are attached to terminal carbon atoms. These are also called polymethylene halides. \[\underset{\text{Trimethylene bromide }}{\mathop{C{{H}_{2}}BrC{{H}_{2}}C{{H}_{2}}Br}}\,\] ;   \[\underset{\text{Tetra-methylene chloride}}{\mathop{Cl-C{{H}_{2}}-C{{H}_{2}}-C{{H}_{2}}-C{{H}_{2}}-Cl}}\,\] (iii) The tri-halogen derivatives are termed as halo-forms Example:  \[\underset{\text{Chloroform}}{\mathop{CHC{{l}_{3}}}}\,\];             \[\underset{\text{Bromoform}}{\mathop{CHB{{r}_{3}}}}\,\];             \[\underset{I\text{odoform}}{\mathop{CH{{I}_{3}}}}\,\] (iv) In tetra-halogen derivatives all the four halogen atoms are attached to the same carbon atom in derivatives of methane. Example: \[\underset{\text{Carbon}\,\text{tetrachloride}}{\mathop{CC{{l}_{4}}}}\,\];             \[\underset{\text{Carbon}\,\text{tetrabromide}}{\mathop{CB{{r}_{4}}}}\,\]           In other derivatives, the four halogen atoms are attached to different carbon atoms, e.g.,\[\underset{\begin{smallmatrix}  \text{Acetylene tetrachloride or} \\  \text{1,1,2,2-tetrachloroethane} \end{smallmatrix}}{\mathop{\underset{CHC{{l}_{2}}}{\mathop{\underset{|\ \ \ \ \ \ \ \ \ \ \ }{\mathop{CHC{{l}_{2}}}}\,}}\,}}\,\] (3) The common and IUPAC names of some halogen derivatives are listed here.
Formula of halogen derivatives Common name IUPAC name
\[C{{H}_{3}}Cl\] Methyl chloride Chloromethane
\[C{{H}_{3}}C{{H}_{2}}Br\] Ethyl bromide Bromoethane
\[C{{H}_{3}}CHBrC{{H}_{3}}\] Isopropyl bromide 2-Bromopropane
\[C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}C{{H}_{2}}Cl\] n-Butyl chloride
  • World Environment Day 2018 Celebrated In New Delhi
  • President 3-Nation Visit: India & Cuba Sign MoUs
  • SCM BrahMos Test Fired Under Extreme Conditions
  • 4 Indian-Origin Names In List Of Fortune's 40 Young Influential People
  • Colombia joins NATO as global partner
  • Bangladesh Cabinet Clears Deal With India For Port Usage
  • PM Inaugurates Key Development Projects In Varanasi
  • Paisabazaar.com Launches India’s First ‘Chance of Approval’ Feature

  • You need to login to perform this action.
    You will be redirected in 3 sec spinner