Current Affairs JEE Main & Advanced

 
Parabola \[{{y}^{2}}=4ax\] \[{{y}^{2}}=-4ax\] \[{{x}^{2}}=4ay\] \[{{x}^{2}}=-4ay\]
Parametric Co-ordinates \[(a{{t}^{2}},2at)\] \[(-a{{t}^{2}},2at)\] \[(2at,a{{t}^{2}})\] \[(2at,\ -a{{t}^{2}})\]
Parametric Equations \[x=a{{t}^{2}}\] \[y=2at\] \[x=-a{{t}^{2}}\] \[y=2at\] \[x=2at\] \[y=a{{t}^{2}}\] \[x=2at\], \[y=-a{{t}^{2}}\]
  The parametric equations of parabola \[{{(y-k)}^{2}}=4a(x-h)\] are \[x=h+a{{t}^{2}}\] and \[y=k+2at\].  

(1) Position of a point with respect to a parabola : The point \[P({{x}_{1}},{{y}_{1}})\] lies outside, on or inside the parabola \[{{y}^{2}}=4ax\] according as \[y_{1}^{2}-4a{{x}_{1}}>,=\text{,}\,<0\].             (2) Intersection of a line and a parabola: The line \[y=mx+c\] does not intersect, touches or intersect a parabola \[{{y}^{2}}=4ax\], according as \[c>,=,<\frac{a}{m}\].     Condition of tangency : The line \[y=mx+c\] touches the parabola, if \[c=a/m\].

(1) Point Form      
Equations of tangent of all other standard parabolas at \[\mathbf{(}{{\mathbf{x}}_{\mathbf{1}}}\mathbf{,}{{\mathbf{y}}_{\mathbf{1}}}\mathbf{)}\]
Equation of parabola Tangent at \[\mathbf{(}{{\mathbf{x}}_{\mathbf{1}}}\mathbf{,}{{\mathbf{y}}_{\mathbf{1}}}\mathbf{)}\]
\[{{y}^{2}}=4ax\] \[y{{y}_{1}}=\text{ }2a(x+{{x}_{1}})\]
\[{{y}^{2}}=-4ax\] \[y{{y}_{1}}=-2a(x+{{x}_{1}})\]
\[{{x}^{2}}=4ay\] \[x{{x}_{1}}=2a(y+{{y}_{1}})\]
\[{{x}^{2}}=-4ay\] \[x{{x}_{1}}=-2a(y+{{y}_{1}})\]
   (2) Parametric form      
Equations of tangent of all other standard parabolas at \[\mathbf{'t'}\]
Equations of parabolas Parametric  co-ordinates \[\mathbf{'t'}\] Tangent at \[\mathbf{'t'}\]
\[{{y}^{2}}=4ax\] \[(a{{t}^{2}},2at)\] \[ty=x+a{{t}^{2}}\]
\[{{y}^{2}}=-4ax\] \[(-a{{t}^{2}},2at)\] more...
(1) The point of intersection of tangents at two points \[P(at_{1}^{2},2a{{t}_{1}})\] and \[Q(at_{2}^{2},2a{{t}_{2}})\] on the parabola \[{{y}^{2}}=4ax\] is \[(a{{t}_{1}}{{t}_{2}},a({{t}_{1}}+{{t}_{2}}))\].             (2) The locus of the point of intersection of tangents to the parabola \[{{y}^{2}}=4ax\] which meet at an angle \[\alpha \] is \[{{(x+a)}^{2}}{{\tan }^{2}}\alpha ={{y}^{2}}-4ax\].     (3) Director circle: The locus of the point of intersection of perpendicular tangents to a conic is known as its director circle. The director circle of a parabola is its directrix.     (4) The tangents to the parabola \[\frac{x{{x}_{1}}}{{{a}^{2}}}-\frac{y{{y}_{1}}}{{{b}^{2}}}=1\] at \[P(at_{1}^{2},2a{{t}_{1}})\] and \[Q(at_{2}^{2},2a{{t}_{2}})\] intersect at R. Then the area of triangle \[\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1\] is \[\frac{1}{2}{{a}^{2}}{{({{t}_{1}}-{{t}_{2}})}^{3}}\].

The combined equation of the pair of the tangents drawn from a point to a parabola is \[SS'={{T}^{2}}\], where \[S={{y}^{2}}-4ax;\] \[S'=y_{1}^{2}-4a{{x}_{1}}\] and \[T=y{{y}_{1}}-2a(x+{{x}_{1}})\].               The two tangents can be drawn from a point to a parabola. The two tangent are real and distinct or coincident or imaginary according as the given point lies outside, on or inside the parabola.  

(1) Point form        
Equation of normals of all other standard parabolas at  \[\mathbf{(}{{\mathbf{x}}_{\mathbf{1}}}\mathbf{,}{{\mathbf{y}}_{\mathbf{1}}}\mathbf{)}\]
Equation of parabola Normal at \[\mathbf{(}{{\mathbf{x}}_{\mathbf{1}}}\mathbf{,}{{\mathbf{y}}_{\mathbf{1}}}\mathbf{)}\]
\[{{y}^{2}}=\text{ }4ax\] \[y-{{y}_{1}}=\frac{-{{y}_{1}}}{2a}(x-{{x}_{1}})\]
\[{{y}^{2}}=-4ax\] \[y-{{y}_{1}}=\frac{{{y}_{1}}}{2a}(x-{{x}_{1}})\]
\[{{x}^{2}}=4ay\] \[y-{{y}_{1}}=-\frac{2a}{{{x}_{1}}}(x-{{x}_{1}})\]
\[{{x}^{2}}=-4ay\] \[y-{{y}_{1}}=\frac{2a}{{{x}_{1}}}(x-{{x}_{1}})\]
  (2) Parametric form        
Equations of normal of all other standard parabola at \[\mathbf{'t'}\]
Equations of parabolas Parametric co-ordinates Normals at \[\mathbf{'t'}\]
\[{{y}^{2}}=4ax\] \[(a{{t}^{2}},\text{ }2at)\] \[y+tx=2at+a{{t}^{3}}\]
\[{{y}^{2}}=-4ax\] more...
The point of intersection of normals at any two points \[P(at_{1}^{2},2a{{t}_{1}})\] and \[Q(at_{2}^{2},2a{{t}_{2}})\]on the parabola \[{{y}^{2}}=4ax\]is \[R\,[2a+a(t_{1}^{2}+t_{2}^{2}+{{t}_{1}}{{t}_{2}}),\ -a{{t}_{1}}{{t}_{2}}({{t}_{1}}+{{t}_{2}})]\]      

If the normal at the point \[P(at_{^{1}}^{2},2a{{t}_{1}})\] meets the parabola \[{{y}^{2}}=4ax\] again at \[(at_{2}^{2},2a{{t}_{2}})\],         then \[{{t}_{2}}=-{{t}_{1}}-\frac{2}{{{t}_{1}}}\].  

The points on the curve at which the normals pass through a common point are called co-normal points. Q, R, S are co-normal points. The co- normal points are also called the feet of the normals.         Properties of co-normal points   (1) Three normals can be drawn from a point to a parabola.   (2) The algebraic sum of the slopes of three concurrent normals is zero.   (3) The sum of the ordinates of the co-normal points is zero.   (4) The centroid of the triangle formed by the co-normal points lies on the axis of the parabola.   (5) The centroid of a triangle formed by joining the foots of the normal of the parabola lies on its axis and is given by     \[\left( \frac{am_{1}^{2}+am_{2}^{2}+am_{3}^{2}}{3},\frac{2a{{m}_{1}}+2a{{m}_{2}}+2a{{m}_{3}}}{3} \right)\]\[=\left( \frac{am_{1}^{2}+am_{2}^{2}+am_{3}^{2}}{3},0 \right)\].     (6) If three normals drawn to any parabola \[{{y}^{2}}=4ax\]from a given point (h, k) be real, then \[h>2a\] for \[a=1\], normals drawn to the parabola \[{{y}^{2}}=4x\] from any point (h, k) are real, if \[h>2\].     (7) Out of these three at least one is real, as imaginary normals will always occur in pairs.

Let PQ and PR be tangents to the parabola \[{{y}^{2}}=4ax\] drawn from any external point \[P({{x}_{1}},{{y}_{1}})\] then QR is called the chord of contact of the parabola \[{{y}^{2}}=4ax\].         The chord of contact of tangents drawn from a point \[({{x}_{1}},{{y}_{1}})\] to the parabola \[{{y}^{2}}=4ax\] is \[y{{y}_{1}}=2a(x+{{x}_{1}})\].  


You need to login to perform this action.
You will be redirected in 3 sec spinner