Current Affairs JEE Main & Advanced

A bullet of mass m is fired horizontally with velocity u in block of mass M suspended by vertical thread. After the collision bullet gets embedded in block. Let the combined system raised upto height h and the string makes an angle \[\theta \] with the vertical. (1) Velocity of system Let \[\upsilon \] be the velocity of the system (block + bullet) just after the collision.                 \[\text{Momentu}{{\text{m}}_{\text{bullet}}}\text{+ Momentu}{{\text{m}}_{\text{block}}}\text{= Momentu}{{\text{m}}_{\text{bullet and block system}}}\] \[mu+0=(m+M)v\] \[\therefore \] \[v=\frac{mu}{(m+M)}\]                                                    ...(i) (2) Velocity of bullet : Due to energy which remains in the bullet-block system, just after the collision, the system (bullet + block) rises upto height h. By the conservation of mechanical energy \[\frac{1}{2}(m+M){{v}^{2}}=(m+M)gh\] Þ \[v=\sqrt{2gh}\] Now substituting this value in the equation (i) we get \[\sqrt{2gh}=\frac{mu}{m+M}\] \[\therefore \] \[u=\left[ \frac{(m+M)\sqrt{2gh}}{m} \right]\] (3) Loss in kinetic energy : We know that the formula for loss of kinetic energy in perfectly inelastic collision \[\Delta K=\frac{1}{2}\frac{{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}\,{{({{u}_{1}}-{{u}_{2}})}^{2}}\]             (When the bodies are moving in same direction.) \[\therefore \] \[\Delta K=\frac{1}{2}\frac{mM}{m+M}{{u}^{2}}\]              [As \[{{u}_{1}}=u\], \[{{u}_{2}}=0\], \[{{m}_{1}}=m\] and \[{{m}_{2}}=M\]] (4) Angle of string from the vertical From the expression of velocity of bullet \[u=\left[ \frac{(m+M)\sqrt{2gh}}{m} \right]\] we can get \[h=\frac{{{u}^{2}}}{2g}{{\left( \frac{m}{m+M} \right)}^{2}}\] From the figure \[\cos \theta =\frac{L-h}{L}=1-\frac{h}{L}\]\[=1-\frac{{{u}^{2}}}{2gL}{{\left( \frac{m}{m+M} \right)}^{2}}\] or                     \[\theta ={{\cos }^{-1}}\left[ 1-\frac{1}{2gL}{{\left( \frac{mu}{m+M} \right)}^{2}} \right]\]  

In such types of collisions, the bodies move independently before collision but after collision as a one single body. (1) When the colliding bodies are moving in the same direction  By the law of conservation of momentum \[{{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}=({{m}_{1}}+{{m}_{2}}){{v}_{\text{comb}}}\] \[\Rightarrow \] \[{{v}_{\text{comb}}}=\frac{{{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]   Loss in kinetic energy \[\Delta K=\left( \frac{1}{2}{{m}_{1}}u_{1}^{2}+\frac{1}{2}{{m}_{2}}u_{2}^{2} \right)-\frac{1}{2}({{m}_{1}}+{{m}_{2}})v_{comb}^{2}\] \[\Delta K=\frac{1}{2}\left( \frac{{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{({{u}_{1}}-{{u}_{2}})}^{2}}\]                [By substituting the value of \[{{\upsilon }_{comb}}\]] (2) When the colliding bodies are moving in the opposite direction By the law of conservation of momentum \[{{m}_{1}}{{u}_{1}}+{{m}_{2}}(-{{u}_{2}})=({{m}_{1}}+{{m}_{2}}){{v}_{\text{comb}}}\]       (Taking left to right as positive) \[\therefore \] \[{{v}_{\text{comb}}}=\frac{{{m}_{1}}{{u}_{1}}-{{m}_{2}}{{u}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]   when \[{{m}_{1}}{{u}_{1}}>{{m}_{2}}{{u}_{2}}\] then \[{{v}_{\text{comb}}}>0\] (positive) i.e. the combined body will move along the direction of motion of mass \[{{m}_{1}}\]. when \[{{m}_{1}}{{u}_{1}}<{{m}_{2}}{{u}_{2}}\] then \[{{v}_{\text{comb}}}<0\] (negative) i.e. the combined body will move in a direction opposite to the motion of mass \[{{m}_{1}}\]. (3) Loss in kinetic energy \[\Delta K=\] Initial kinetic energy - Final kinetic energy \[=\left( \frac{1}{2}{{m}_{1}}u_{1}^{2}+\frac{1}{2}{{m}_{2}}u_{2}^{2} \right)-\left( \frac{1}{2}({{m}_{1}}+{{m}_{2}})\,v_{\text{comb}}^{2} \right)\] \[=\frac{1}{2}\frac{{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}{{({{u}_{1}}-{{u}_{2}})}^{2}}\]  

If a ball is dropped from a height h on a horizontal floor, then it strikes with the floor with a speed. \[{{v}_{0}}=\sqrt{2g{{h}_{0}}}\]                   [From \[{{v}^{2}}={{u}^{2}}+2gh]\] and it rebounds from the floor with a speed                      \[{{v}_{1}}=e\,{{v}_{0}}\]\[=e\sqrt{2g{{h}_{0}}}\]     \[\left[ \text{As }e=\frac{\text{velocity after collision}}{\text{velocity before collision}} \right]\] (1) First height of rebound : \[{{h}_{1}}=\frac{v_{1}^{2}}{2g}={{e}^{2}}{{h}_{0}}\] \[\therefore \,\,\,\,{{h}_{1}}={{e}^{2}}{{h}_{0}}\] (2) Height of the ball after nth rebound : Obviously, the velocity of ball after nth rebound will be \[{{v}_{n}}={{e}^{n}}{{v}_{0}}\] Therefore the height after nth rebound will be \[{{h}_{n}}=\frac{v_{n}^{2}}{2g}={{e}^{2n}}{{h}_{0}}\] \[\therefore \] \[{{h}_{n}}={{e}^{2n}}{{h}_{0}}\] (3) Total distance travelled by the ball before it stops bouncing \[H={{h}_{0}}+2{{h}_{1}}+2{{h}_{2}}+2{{h}_{3}}+...\]\[={{h}_{0}}+2{{e}^{2}}{{h}_{0}}+2{{e}^{4}}{{h}_{0}}+2{{e}^{6}}{{h}_{0}}+...\] \[H={{h}_{0}}[1+2{{e}^{2}}(1+{{e}^{2}}+{{e}^{4}}+{{e}^{6}}....)]\] \[={{h}_{0}}\left[ 1+2{{e}^{2}}\left( \frac{1}{1-{{e}^{2}}} \right) \right]\]       \[\left[ \text{As}\,\,\,1+{{e}^{2}}+{{e}^{4}}+....=\frac{1}{1-{{e}^{2}}} \right]\] \[\therefore \] \[H={{h}_{0}}\left[ \frac{1+{{e}^{2}}}{1-{{e}^{2}}} \right]\] (4) Total time taken  by the ball to stop bouncing \[T={{t}_{0}}+2{{t}_{1}}+2{{t}_{2}}+2{{t}_{3}}+..\]\[=\sqrt{\frac{2{{h}_{0}}}{g}}+2\sqrt{\frac{2{{h}_{1}}}{g}}+2\sqrt{\frac{2{{h}_{2}}}{g}}+..\] \[=\sqrt{\frac{2{{h}_{0}}}{g}}\,\,\,\,[1+2e+2{{e}^{2}}+......]\]  [As \[{{h}_{1}}={{e}^{2}}{{h}_{0}}\]; \[{{h}_{2}}={{e}^{4}}{{h}_{0}}\]] \[=\sqrt{\frac{2{{h}_{0}}}{g}}\,\,\,\,[1+2e(1+e+{{e}^{2}}+{{e}^{3}}+......)]\] \[=\sqrt{\frac{2{{h}_{0}}}{g}}\,\left( \frac{1+e}{1-e} \right)\] \[\therefore \] \[T=\left( \frac{1+e}{1-e} \right)\,\sqrt{\frac{2{{h}_{0}}}{g}}\]  

(1) Velocity after collision : Let two bodies A and B collide inelastically and coefficient of restitution is e. Where                         \[e=\frac{{{v}_{2}}-{{v}_{1}}}{{{u}_{1}}-{{u}_{2}}}=\frac{\text{Relative velocity of separation}}{\text{Relative velocity of approach}}\] \[\Rightarrow \] \[{{v}_{2}}-{{v}_{1}}=e({{u}_{1}}-{{u}_{2}})\]      \ \[{{v}_{2}}-{{v}_{1}}=e({{u}_{1}}-{{u}_{2}})\]                                       ...(i) From the law of conservation of linear momentum      \[{{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}\]                         ...(ii) By solving (i) and (ii) we get \[{{v}_{1}}=\left( \frac{{{m}_{1}}-e{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\left( \frac{(1+e)\,{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}\] Similarly  \[{{v}_{2}}=\left[ \frac{(1+e)\,{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right]\,{{u}_{1}}+\left( \frac{{{m}_{2}}-e\,{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}\] By substituting e = 1, we get the value of \[{{v}_{1}}\] and \[{{v}_{2}}\] for perfectly elastic head on collision. (2) Ratio of velocities after inelastic collision : A sphere of mass m moving with velocity u hits inelastically with another stationary sphere of same mass. \[\therefore \] \[e=\frac{{{v}_{2}}-{{v}_{1}}}{{{u}_{1}}-{{u}_{2}}}=\frac{{{v}_{2}}-{{v}_{1}}}{u-0}\] \[\Rightarrow \] \[{{v}_{2}}-{{v}_{1}}=eu\]                                                        ...(i) By conservation of momentum : Momentum before collision = Momentum after collision \[mu=m{{v}_{1}}+m{{v}_{2}}\] \[\Rightarrow \] \[{{v}_{1}}+{{v}_{2}}=u\]                                                             ...(ii) Solving equation (i) and (ii) we get \[{{v}_{1}}=\frac{u}{2}(1-e)\] and \[{{v}_{2}}=\frac{u}{2}(1+e)\] \[\therefore \] \[\frac{{{v}_{1}}}{{{v}_{2}}}=\frac{1-e}{1+e}\] (3) Loss in kinetic energy      Loss in K.E. (DK) = Total initial kinetic energy                   - Total final kinetic energy = \[\left( \frac{1}{2}{{m}_{1}}u_{1}^{2}+\frac{1}{2}{{m}_{2}}u_{2}^{2} \right)-\left( \frac{1}{2}{{m}_{1}}v_{1}^{2}+\frac{1}{2}{{m}_{2}}v_{2}^{2} \right)\] Substituting the value of \[{{v}_{1}}\] and \[{{v}_{2}}\] from the above expressions Loss (DK) = \[\frac{1}{2}\left( \frac{{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,(1-{{e}^{2}})\,{{({{u}_{1}}-{{u}_{2}})}^{2}}\] By substituting e = 1 we get \[\Delta K=0\] i.e. for perfectly elastic collision, loss of kinetic energy will be zero or kinetic energy remains same before and after the collision.  

Let two bodies moving as shown in figure. By law of conservation of momentum Along x-axis, \[{{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}\cos \theta +{{m}_{2}}{{v}_{2}}\cos \varphi \]   ...(i) Along y-axis, \[0={{m}_{1}}{{v}_{1}}\sin \theta -{{m}_{2}}{{v}_{2}}\sin \varphi \]          ...(ii) By law of conservation of kinetic energy \[\frac{1}{2}{{m}_{1}}u_{1}^{2}+\frac{1}{2}{{m}_{2}}u_{2}^{2}=\frac{1}{2}{{m}_{1}}v_{1}^{2}+\frac{1}{2}{{m}_{2}}v_{2}^{2}\]                                        ...(iii) In case of oblique collision it becomes difficult to solve problem unless some experimental data is provided, as in these situations more unknown variables are involved than equations formed. Special condition : If \[{{m}_{1}}={{m}_{2}}\] and \[{{u}_{2}}=0\] substituting these values in equation (i), (ii) and (iii) we get \[{{u}_{1}}={{v}_{1}}\cos \theta +{{v}_{2}}\cos \varphi \]                                                   ...(iv) \[0={{v}_{1}}\sin \theta -{{v}_{2}}\sin \varphi \]           ...(v) and \[u_{1}^{2}=v_{1}^{2}+v_{2}^{2}\]            ...(vi) Squaring (iv) and (v) and adding we get \[u_{1}^{2}=v_{1}^{2}+v_{2}^{2}+2{{v}_{1}}{{v}_{2}}\cos (\theta +\varphi )\]           ...(vii) Using (vi) and (vii) we get \[\cos (\theta +\varphi )=0\] \[\therefore \] \[\theta +\varphi =\pi /2\] i.e. after perfectly elastic oblique collision of two bodies of equal masses (if the second body is at rest), the scattering angle \[\theta +\varphi \] would be \[{{90}^{o}}\].  

Let two bodies of masses \[{{m}_{1}}\] and \[{{m}_{2}}\] moving with initial velocities \[{{u}_{1}}\] and \[{{u}_{2}}\] in the same direction and they collide such that after collision their final velocities are \[{{v}_{1}}\] and \[{{v}_{2}}\] respectively. According to law of conservation of momentum \[{{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}\]                                               ...(i)                                                               \[\Rightarrow\]  \[{{m}_{1}}({{u}_{1}}-{{v}_{1}})={{m}_{2}}({{v}_{2}}-{{u}_{2}})\]                               ...(ii) According to law of conservation of kinetic energy \ [\frac{1}{2}{{m}_{1}}u_{1}^{2}+\frac{1}{2}{{m}_{2}}u_{2}^{2}=\frac{1}{2}{{m}_{1}}v_{1}^{2}+\frac{1}{2}{{m}_{2}}v_{2}^{2}\]                     ...(iii) \[\Rightarrow\]  \[{{m}_{1}}(u_{1}^{2}-v_{1}^{2})={{m}_{2}}(v_{2}^{2}-u_{2}^{2})\]                    ....(iv) Dividing equation (iv) by equation (ii) \[{{v}_{1}}+{{u}_{1}}={{v}_{2}}+{{u}_{2}}\]                                                                             ...(v) \[\Rightarrow\]  \[{{u}_{1}}-{{u}_{2}}={{v}_{2}}-{{v}_{1}}\]                                            ...(vi) Relative velocity of separation is equal to relative velocity of approach. Note :
  • The ratio of relative velocity of separation and relative velocity of approach is defined as coefficient of restitution.
\[e=\frac{{{v}_{2}}-{{v}_{1}}}{{{u}_{1}}-{{u}_{2}}}\]   or   \[{{v}_{2}}-{{v}_{1}}=e({{u}_{1}}-{{u}_{2}})\] For perfectly elastic collision, e = 1                                                                                                         \[\therefore\]  \[{{v}_{2}}-{{v}_{1}}={{u}_{1}}-{{u}_{2}}\]            [As shown in eq. (vi)] For perfectly inelastic collision,  e = 0 \[\therefore\]  \[{{v}_{2}}-{{v}_{1}}=0\] or \[{{v}_{2}}={{v}_{1}}\] It means that two body stick together and move with same velocity.   For inelastic collision,  0 < e < 1                                                                                                                                    \[\therefore\] \[{{v}_{2}}-{{v}_{1}}=e({{u}_{1}}-{{u}_{2}})\] In short we can say that e is the degree of elasticity of collision and it is dimensionless quantity. Further from equation (v) we get \[{{v}_{2}}={{v}_{1}}+{{u}_{1}}-{{u}_{2}}\] Substituting this value of \[{{v}_{2}}\] in equation (i) and rearranging we get,  \[{{v}_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\frac{2{{m}_{2}}{{u}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]                ...(vii) Similarly we get, \[{{v}_{2}}=\left( \frac{{{m}_{2}}-{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}+\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]                                 ...(viii) (1) Special cases of head on elastic collision
(i) If projectile and target are of same mass i.e. \[{{m}_{1}}={{m}_{2}}\] Since \[{{\upsilon }_{1}}=\left( \frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{1}}+\frac{2{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}{{u}_{2}}\]        
and   \[{{\upsilon }_{2}}=\left( \frac{{{m}_{2}}-{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\,{{u}_{2}}+\frac{2{{m}_{1}}{{u}_{1}}}{{{m}_{1}}+{{m}_{2}}}\] Substituting \[{{m}_{1}}={{m}_{2}}\] we get  \[{{\upsilon }_{1}}={{u}_{2}}\]   and   \[{{\upsilon }_{2}}={{u}_{1}}\] It means when two bodies of equal masses undergo head on elastic collision, their velocities get interchanged. more...
Collision is an isolated event in which a strong force acts between two or more bodies for a short time as a result of which the energy and momentum of the interacting particle change. In collision particles may or may not come in real touch e.g. in collision between two billiard balls or a ball and bat, there is physical contact while in collision of alpha particle by a nucleus (i.e. Rutherford scattering experiment) there is no physical contact. (1) Stages of collision : There are three distinct identifiable stages in collision, namely, before, during and after. In the before and after stage the interaction forces are zero. Between these two stages, the interaction forces are very large and often the dominating forces governing the motion of bodies. The magnitude of the interacting force is often unknown, therefore, Newton?s second law cannot be used, the law of conservation of momentum is useful in relating the initial and final velocities.   (2) Momentum and energy conservation in collision (i) Momentum conservation : In a collision, the effect of external forces such as gravity or friction are not taken into account as due to small duration of collision \[(\Delta t)\] average impulsive force responsible for collision is much larger than external force acting on the system and since this impulsive force is 'Internal' therefore the total momentum of system always remains conserved. (ii) Energy conservation : In a collision 'total energy' is also always conserved. Here total energy includes all forms of energy such as mechanical energy, internal energy, excitation energy, radiant energy or even mass energy. These laws are the fundamental laws of physics and applicable for any type of collision but this is not true for conservation of kinetic energy. (3) Types of collision : (i)  On the basis of conservation of kinetic energy.      
Perfectly elastic collision Inelastic collision Perfectly inelastic collision
If in a collision, kinetic energy after collision is equal to kinetic energy before collision, the collision is said to be perfectly elastic. If in a collision kinetic energy after collision is not equal to kinetic energy before collision, the collision is said to inelastic. more...
An automobile of mass m accelerates, starting from rest, while the engine supplies constant power P, its position and velocity changes w.r.t time. (1) Velocity : As \[F\upsilon =P=\] constant i.e. \[m\frac{dv}{dt}v=P\]                        \[\left[ \text{As }F=\frac{mdv}{dt} \right]\] or \[\int_{{}}^{{}}{v\,dv}=\int_{{}}^{{}}{\frac{P}{m}dt}\] By integrating both sides we get \[\frac{{{v}^{2}}}{2}=\frac{P}{m}t+{{C}_{1}}\] As initially the body is at rest i.e. \[\upsilon =0\] at t = 0, so \[{{C}_{1}}=0\] \[\therefore \] \[v={{\left( \frac{2Pt}{m} \right)}^{1/2}}\] (2) Position : From the above expression \[v={{\left( \frac{2Pt}{m} \right)}^{1/2}}\] or  \[\frac{ds}{dt}={{\left( \frac{2Pt}{m} \right)}^{1/2}}\]                                \[\left[ \text{As }v=\frac{ds}{dt} \right]\] i.e. \[\int_{{}}^{{}}{ds}=\int_{{}}^{{}}{{{\left( \frac{2Pt}{m} \right)}^{1/2}}\,dt}\] By integrating both sides we get                                              \[s={{\left( \frac{2P}{m} \right)}^{1/2}}.\frac{2}{3}{{t}^{3/2}}+{{C}_{2}}\] Now as at   t  = 0, s = 0, so \[{{C}_{2}}=0\]            \[s={{\left( \frac{8P}{9m} \right)}^{1/2}}{{t}^{3/2}}\]  

(1) Dimension : \[[P]=[F]\,[v]=[ML{{T}^{-2}}]\,[L{{T}^{-1}}]\] \[\therefore \] \[[P]=[M{{L}^{2}}{{T}^{-3}}]\] (2) Units : Watt or Joule/sec [S.I.]                        Erg/sec [C.G.S.] Practical units :  Kilowatt (KW), Mega watt (MW) and Horse power (hp) Relations between different units : \[1\,Watt=1\,Joule/\sec ={{10}^{7}}erg/\sec \] \[1hp=746\,Watt\]            \[1\,MW={{10}^{6}}\,Watt\]   \[1\,KW={{10}^{3}}\,Watt\] (3) If work done by the two bodies is same then power\[\propto \frac{1}{\text{time}}\] i.e. the body which perform the given work in lesser time possess more power and vice-versa. (4) As power = work/time, any unit of power multiplied by a unit of time gives unit of work (or energy) and not power, i.e. Kilowatt-hour or watt-day are units of work or energy.      \[1\,KWh={{10}^{3}}\frac{J}{sec}\times (60\times 60sec)=3.6\times {{10}^{6}}\,Joule\] (5) The slope of work time curve gives the instantaneous power. As P = dW/dt = tan \[\theta \]     (6) Area under power-time curve gives the work done as \[P=\frac{dW}{dt}\]      \[\therefore \] \[W=\int{P\,dt}\]      \[\therefore \] W = Area under P-t curve    

Power of a body is defined as the rate at which the body can do the work. Average power \[({{P}_{\text{av}\text{.}}})=\frac{\Delta W}{\Delta t}=\frac{W}{t}\] Instantaneous power \[({{P}_{\text{inst}\text{.}}})=\frac{dW}{dt}\]\[=\frac{\vec{F}.\,d\vec{s}}{dt}\] [As \[dW=\vec{F}.\,d\vec{s}\]] \[{{P}_{\text{inst}}}=\vec{F}.\,\vec{v}\]                                 [As \[\vec{v}=\frac{d\vec{s}}{dt}\]] i.e. power is equal to the scalar product of force with velocity.


You need to login to perform this action.
You will be redirected in 3 sec spinner