A) \[\frac{1}{36}\] done clear
B) \[\frac{1}{6}\] done clear
C) \[\frac{5}{6}\] done clear
D) None of these done clear
View Solution play_arrowA) 1 done clear
B) 0 done clear
C) \[\frac{1}{2}\] done clear
D) \[\frac{1}{3}\] done clear
View Solution play_arrowA) \[1-P\,\left( \frac{A}{B} \right)\] done clear
B) \[1-P\,\left( \frac{{\bar{A}}}{B} \right)\] done clear
C) \[\frac{1-P\,(A\cup B)}{P\,(\bar{B})}\] done clear
D) \[\frac{P\,(\bar{A})}{P\,(\bar{B})}\] done clear
View Solution play_arrowA) \[\frac{1}{3}\] done clear
B) \[\frac{1}{2}\] done clear
C) \[\frac{1}{12}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{37}{40}\] done clear
B) \[\frac{37}{45}\] done clear
C) \[\frac{23}{40}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{2}{5}\] done clear
B) \[\frac{2}{3}\] done clear
C) \[\frac{3}{5}\] done clear
D) None of these done clear
View Solution play_arrowA) 0 done clear
B) 1 done clear
C) \[\frac{P\,(A\cap B)}{P\,(A)}\] done clear
D) \[\frac{P\,(A\cap B)}{P\,(B)}\] done clear
View Solution play_arrowA) 0 done clear
B) 1 done clear
C) 1/2 done clear
D) 1/3 done clear
View Solution play_arrowquestion_answer9) If A and B are two independent events, then \[P\,\left( \frac{A}{B} \right)=\]
A) 0 done clear
B) 1 done clear
C) \[P\,(A)\] done clear
D) \[P\,(B)\] done clear
View Solution play_arrowA) E and \[{{F}^{c}}\](the complement of the event F) are independent done clear
B) \[{{E}^{c}}\]and \[{{F}^{c}}\]are independent done clear
C) \[P\,\left( \frac{E}{F} \right)+P\,\left( \frac{{{E}^{c}}}{{{F}^{c}}} \right)=1\] done clear
D) All of the above done clear
View Solution play_arrowA) \[\frac{2}{5}\] done clear
B) \[\frac{3}{5}\] done clear
C) \[\frac{7}{10}\] done clear
D) \[\frac{19}{60}\] done clear
View Solution play_arrowquestion_answer12) For a biased die, the probabilities for different faces to turn up are
Face : | 1 | 2 | 3 | 4 | 5 | 6 |
Probability : | 0.2 | 0.22 | 0.11 | 0.25 | 0.05 | 0.17 |
A) \[\frac{1}{6}\] done clear
B) \[\frac{1}{4}\] done clear
C) \[\frac{5}{6}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{1}{2}\] done clear
B) \[\frac{1}{4}\] done clear
C) \[\frac{1}{3}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{1}{7}\] done clear
B) \[\frac{1}{8}\] done clear
C) \[\frac{2}{7}\] done clear
D) \[\frac{1}{6}\] done clear
View Solution play_arrowA) \[P\,\left( \frac{A}{B} \right)=\frac{1}{2}\] done clear
B) \[P\,\left( \frac{A}{A\cup B} \right)=\frac{5}{6}\] done clear
C) \[P\,\left( \frac{A\cap B}{{A}'\cup {B}'} \right)=0\] done clear
D) All of the above done clear
View Solution play_arrowA) A and B are independent done clear
B) \[P\,\left( \frac{{{A}'}}{B} \right)=\frac{3}{4}\] done clear
C) \[P\,\left( \frac{{{B}'}}{{{A}'}} \right)=\frac{1}{2}\] done clear
D) All of the above done clear
View Solution play_arrowFace : | 1 | 2 | 3 | 4 | 5 | 6 |
Probability : | 0.1 | 0.24 | 0.19 | 0.18 | 0.15 | 0.14 |
A) 0.25 done clear
B) 0.42 done clear
C) 0.75 done clear
D) 0.9 done clear
View Solution play_arrowA) \[\frac{1}{2}\] done clear
B) \[\frac{1}{3}\] done clear
C) \[\frac{1}{4}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{5}{17}\] done clear
B) \[\frac{12}{17}\] done clear
C) \[\frac{17}{30}\] done clear
D) \[\frac{3}{5}\] done clear
View Solution play_arrowA) \[P(B/A)=P(B)-P(A)\] done clear
B) \[P({{A}^{c}}\cup {{B}^{c}})=P({{A}^{c}})+P({{B}^{c}})\] done clear
C) \[P{{(A\cup B)}^{c}}=P({{A}^{c}})\,P({{B}^{c}})\] done clear
D) \[P(A/B)=P(A)\] done clear
View Solution play_arrowquestion_answer21) For a biased die the probabilities for different faces to turn up are given below
Face : | 1 | 2 | 3 | 4 | 5 | 6 |
Probability : | 0.1 | 0.32 | 0.21 | 0.15 | 0.05 | 0.17 |
A) \[\frac{5}{21}\] done clear
B) \[\frac{5}{22}\] done clear
C) \[\frac{4}{21}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{1}{5}\] done clear
B) \[\frac{3}{8}\] done clear
C) \[\frac{1}{3}\] done clear
D) \[\frac{2}{3}\] done clear
View Solution play_arrowA) \[\frac{7}{15}\] done clear
B) \[\frac{5}{19}\] done clear
C) \[\frac{3}{4}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{37}{40}\] done clear
B) \[\frac{1}{37}\] done clear
C) \[\frac{36}{37}\] done clear
D) \[\frac{1}{9}\] done clear
View Solution play_arrowA) \[\frac{3}{4}\] done clear
B) \[\frac{3}{8}\] done clear
C) \[\frac{1}{2}\] done clear
D) \[\frac{1}{8}\] done clear
View Solution play_arrowA) \[\frac{5}{6}\] done clear
B) \[\frac{5}{8}\] done clear
C) \[\frac{9}{10}\] done clear
D) None of these done clear
View Solution play_arrowA) \[P\,(E/F)+P\,(\bar{E}/F)=1\] done clear
B) \[P\,(E/F)+P\,(E/\bar{F})=1\] done clear
C) \[P\,(\bar{E}/F)+P\,(E/\bar{F})=1\] done clear
D) \[P\,(E/\bar{F})+P\,(\bar{E}/\bar{F})=1\] done clear
View Solution play_arrowA) A and B are independent done clear
B) \[P\left( \frac{{{A}'}}{B} \right)=\frac{3}{4}\] done clear
C) \[P\left( \frac{{{B}'}}{{{A}'}} \right)=\frac{1}{2}\] done clear
D) All of these done clear
View Solution play_arrowA) \[\frac{1}{26}\] done clear
B) \[\frac{5}{52}\] done clear
C) \[\frac{5}{221}\] done clear
D) \[\frac{4}{13}\] done clear
View Solution play_arrowA) \[\frac{1}{18}\] done clear
B) \[\frac{1}{36}\] done clear
C) \[\frac{1}{9}\] done clear
D) \[\frac{1}{3}\] done clear
View Solution play_arrowA) \[\frac{1}{19}\] done clear
B) \[\frac{2}{19}\] done clear
C) \[\frac{3}{19}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{3}{8}\] done clear
B) \[\frac{1}{5}\] done clear
C) \[\frac{3}{4}\] done clear
D) None of these done clear
View Solution play_arrowA) \[\frac{5}{14}\] done clear
B) \[\frac{5}{16}\] done clear
C) \[\frac{5}{18}\] done clear
D) \[\frac{25}{52}\] done clear
View Solution play_arrowA) \[\frac{2}{15}\] done clear
B) \[\frac{7}{15}\] done clear
C) \[\frac{8}{15}\] done clear
D) \[\frac{14}{15}\] done clear
View Solution play_arrowA) \[\frac{2}{7}\] done clear
B) \[\frac{2}{3}\] done clear
C) \[\frac{3}{7}\] done clear
D) \[\frac{1}{3}\] done clear
View Solution play_arrowYou need to login to perform this action.
You will be redirected in
3 sec