Find the value of: |
(a) \[15625\times \left( -2 \right)+\left( -15625 \right)\times 98\] |
(b) \[18946\times 99-\left( -18946 \right)\] |
Find: |
(a) \[5\times 2\frac{3}{7}\] |
(b) \[1\frac{4}{9}\times 6\] |
Add and Subtract: |
(a) m - n, m + n |
(b) mn + 5 - 2, mn + 3. |
Find: |
(a) \[\frac{5}{6}-\frac{7}{3}\] |
(b) \[3\frac{1}{5}-\left( -\frac{2}{3} \right)\] |
When a = 0, b = -1, find the value of the given expressions: |
(a) 2a+2b |
(b) \[2{{a}^{2}}+\text{ }b2\text{ }+\text{ }1\] |
(c) \[2{{a}^{2}}b+2a{{b}^{2}}+ab\] |
Here are the shadows of some 3-D objects, when seen under the lamp of an overhead projector. Identify the solid(s) that match each shadow. (There may be multiple answers for these!) |
(a) |
(b) |
(c) |
(d) |
(a) Construct 3 equations starting with x = 2 |
(b) Construct 3 equations starting with x = -2 |
Find |
(a) \[\frac{-3}{7}+\frac{2}{3}\] |
(b) \[\frac{-5}{6}+\frac{-3}{11}\] |
Year | X | XII |
1994-95 | 90 | 95 |
1995-96 | 95 | 80 |
1996-97 | 90 | 85 |
1997-98 | 80 | 90 |
1998-99 | 98 | 95 |
Find the area of the following circles: |
(a) radius = 14 mm (Take\[\pi =\frac{22}{7}\]) |
(b) diameter = 49 m |
(c) radius = 5 cm. |
Simplify: |
(a) \[\frac{{{12}^{4}}\times {{9}^{3}}\times 4}{{{6}^{3}}\times {{8}^{2}}\times 27}\] |
(b) \[{{2}^{3}}\times {{a}^{3}}\times 5{{a}^{4}}\] |
You need to login to perform this action.
You will be redirected in
3 sec