VIT Engineering VIT Engineering Solved Paper-2009

  • question_answer
    Let \[f(x)={{x}^{2}}+ax+b,\] where \[a,b\in R.\] If \[f(x)=0\] has all its roots imaginary, then the roots of \[f(x)+f(x)+f(x)=0\]are

    A)  real and distinct  

    B)  imaginary

    C)  equal           

    D)  rational and equal

    Correct Answer: B

    Solution :

    Given, \[f(x)={{x}^{2}}+ax+b\]has imaginary roots. Discriminant, \[D<0\Rightarrow {{a}^{2}}-4b<0\] Now,         \[f(x)=2x+a\] \[f(x)=2\] Also,     \[f(x)+f(x)+f(x)=0\] ?(i) \[\Rightarrow \] \[{{x}^{2}}+ax+b+2x+a+2=0\] \[\Rightarrow \] \[{{x}^{2}}+(a+2)x+b+a+2=0\] \[\therefore \] \[x=\frac{-(a+2)\pm \sqrt{{{(a+2)}^{2}}-4(a+b+2)}}{2}\] \[=\frac{-(a+2)\pm \sqrt{{{a}^{2}}-4b-4}}{2}\] Since, \[{{a}^{2}}-4b<0\] \[\therefore \] \[{{a}^{2}}-4b-4<0\] Hence, Eq. (i) has imaginary roots.


You need to login to perform this action.
You will be redirected in 3 sec spinner