Solved papers for JEE Main & Advanced AIEEE Solved Paper-2007

done AIEEE Solved Paper-2007

  • question_answer1) The displacement of an object attached to a spring and executing simple harmonic motion is given by\[2x+3y+z=1\]\[x+3y+2z=2\] metre. The time at which the maximum speed first occurs is       AIEEE  Solved  Paper-2007

    A)  0.5 s                                     

    B)  0.75 s   

    C)         0.125s                 

    D)         0.25s

    View Answer play_arrow
  • question_answer2) A point mass oscillates along the x-axis according to the law\[{{\log }_{3}}e\].If the acceleration of the particle is written as \[{{\log }_{e}}3\]then       AIEEE  Solved  Paper-2007

    A)  \[f(x)={{\tan }^{-1}}(\sin x+\cos x)\]

    B)    \[(\pi /4,\pi /2)\]

    C)  \[(-\pi /2,\pi /4)\]

    D)  \[(0,\pi /2)\]

    View Answer play_arrow
  • question_answer3) Two springs, of force constants\[{{I}_{0}}=\frac{E}{R}=\frac{5}{5}=1\,A\]and\[\tau =\frac{L}{R}=\frac{10}{5}=2\,s\]are connected to a mass m as shown. The frequency of oscillation of the mass is \[f\]. If both\[(\therefore -t/\tau =\frac{-2}{2}=-1)\]and\[J=\frac{i}{\pi {{a}^{2}}}\]are made four times their original values, the frequency of. oscillation becomes       AIEEE  Solved  Paper-2007

    A)  \[\oint{B.dl}={{\mu }_{0}}.{{i}_{enclosed}}\]    

    B)                                         \[\oint{B.dl}={{\mu }_{0}}.{{i}_{enclosed}}\]                                     

    C)         \[x=2\times {{10}^{-2}}\]                                            

    D)         \[cos\text{ }\pi t\]

    View Answer play_arrow
  • question_answer4) A particle of mass m executes simple harmonic motion with amplitude a and frequency v. The average kinetic energy during its motion from the position of equilibrium to the end is       AIEEE  Solved  Paper-2007

    A)  \[p=\frac{{{E}_{0}}{{I}_{0}}}{2}\] 

    B)                         \[P=\sqrt{2}{{E}_{0}}{{I}_{0}}\]                

    C)         \[{{10}^{-3}}\mu C\]                     

    D)         \[(\sqrt{2},\sqrt{2})\]

    View Answer play_arrow

Study Package

AIEEE Solved Paper-2007
  50 25


You need to login to perform this action.
You will be redirected in 3 sec spinner