# Solved papers for JEE Main & Advanced AIEEE Solved Paper-2007

### done AIEEE Solved Paper-2007

• question_answer1) The displacement of an object attached to a spring and executing simple harmonic motion is given by$2x+3y+z=1$$x+3y+2z=2$ metre. The time at which the maximum speed first occurs is       AIEEE  Solved  Paper-2007

A)  0.5 s

B)  0.75 s

C)         0.125s

D)         0.25s

• question_answer2) A point mass oscillates along the x-axis according to the law${{\log }_{3}}e$.If the acceleration of the particle is written as ${{\log }_{e}}3$then       AIEEE  Solved  Paper-2007

A)  $f(x)={{\tan }^{-1}}(\sin x+\cos x)$

B)    $(\pi /4,\pi /2)$

C)  $(-\pi /2,\pi /4)$

D)  $(0,\pi /2)$

• question_answer3) Two springs, of force constants${{I}_{0}}=\frac{E}{R}=\frac{5}{5}=1\,A$and$\tau =\frac{L}{R}=\frac{10}{5}=2\,s$are connected to a mass m as shown. The frequency of oscillation of the mass is $f$. If both$(\therefore -t/\tau =\frac{-2}{2}=-1)$and$J=\frac{i}{\pi {{a}^{2}}}$are made four times their original values, the frequency of. oscillation becomes       AIEEE  Solved  Paper-2007

A)  $\oint{B.dl}={{\mu }_{0}}.{{i}_{enclosed}}$

B)                                         $\oint{B.dl}={{\mu }_{0}}.{{i}_{enclosed}}$

C)         $x=2\times {{10}^{-2}}$

D)         $cos\text{ }\pi t$

• question_answer4) A particle of mass m executes simple harmonic motion with amplitude a and frequency v. The average kinetic energy during its motion from the position of equilibrium to the end is       AIEEE  Solved  Paper-2007

A)  $p=\frac{{{E}_{0}}{{I}_{0}}}{2}$

B)                         $P=\sqrt{2}{{E}_{0}}{{I}_{0}}$

C)         ${{10}^{-3}}\mu C$

D)         $(\sqrt{2},\sqrt{2})$