Answer:
As \[{{V}_{BE}}=0,\] potential drop across \[{{R}_{B}}\] is 10 V. \[\therefore \] \[{{I}_{B}}=\frac{10}{400\times {{10}^{3}}}=25\mu A=25\times {{10}^{-6}}A\] \[(\because {{V}_{i}}-{{V}_{BE}}={{I}_{B}}{{R}_{B}})\] Since, \[{{V}_{CE}}=0,\] potential drop across \[{{R}_{C}},\]i.e. \[{{I}_{C}}{{R}_{C}}\] is 10 V. \[\therefore \] \[{{I}_{C}}=\frac{10}{3\times {{10}^{3}}}=3.33\times {{10}^{-3}}=3.33mA\] \[(\because {{V}_{CC}}-{{V}_{CE}}={{I}_{C}}{{R}_{C}})\] \[\therefore \] \[\Beta =\frac{{{I}_{C}}}{{{I}_{B}}}=\frac{3.33\times {{10}^{-3}}}{25\times {{10}^{-6}}}=1.33\times {{10}^{2}}=133\]
You need to login to perform this action.
You will be redirected in
3 sec