12th Class Mathematics Sample Paper Mathematics Sample Paper-5

  • question_answer
    Solve the following initial value problem.
    \[2xy+{{y}^{2}}-2{{x}^{2}}\frac{dy}{dx}=0,\] \[y(1)=2\]
    OR
    Solve the following differential equation.
    \[(1+y+{{x}^{2}}y)\,dx+(x+{{x}^{3}})dy=0\]

    Answer:

    We have,
    \[2xy+{{y}^{2}}-2{{x}^{2}}\frac{dy}{dx}=0\] \[\Rightarrow \] \[2{{x}^{2}}\frac{dy}{dx}=2xy+{{y}^{2}}\]
    \[\Rightarrow \]   \[\frac{dy}{dx}=\frac{2xy+{{y}^{2}}}{2{{x}^{2}}}\]
    Which is a homogeneous differential equation.
    Putting y = vx and \[\frac{dy}{dx}=v+x\frac{dv}{dx},\] it reduces to
                \[v+x\frac{dv}{dx}=\frac{2v+{{v}^{2}}}{2}\]
    \[\Rightarrow \]   \[2v+2x\frac{dv}{dx}=2v+{{v}^{2}}\]
    \[\Rightarrow \]   \[2x\frac{dv}{dx}={{v}^{2}}\]
    \[\Rightarrow \]   \[\frac{2dv}{{{v}^{2}}}=\frac{dx}{x}\]
    \[\Rightarrow \]   \[2\int{\frac{1}{{{v}^{2}}}dv}=\int{\frac{1}{x}dx}\]
    \[\Rightarrow \]   \[\frac{-\,2}{v}=\log \,\,x+C\]
    \[\Rightarrow \]   \[\frac{-\,2x}{y}=\log \,\,x+C\]               ?(i)
    It is given that y(1) = 2, i .e. y = 2 when x = 1. 
    Putting x = 1 and y = 2 in Eq. (i), we get
                \[-\,1=0+C\,\,\,\,\Rightarrow \,\,\,\,C=-\,1\]
    Putting \[C=-\,1\] in Eq. (i), we get
                \[\frac{-\,2x}{y}=\log |x|-\,1\]
    \[\Rightarrow \]   \[y=\frac{2x}{1-\log \,\,x}\]
    Hence, \[y=\frac{2x}{1-\log \,\,x}\] gives the solution of given differential equation. 
    OR
    Given differential equation is
                \[(1+y+{{x}^{2}}y)dx+(x+{{x}^{3}})dy=0\]
    \[\Rightarrow \]   \[(x+{{x}^{3}})dy=-\,(1+y+{{x}^{2}}y)dx\]
    \[\Rightarrow \]   \[\frac{dy}{dx}=\frac{-\,[1+y(1+{{x}^{2}})]}{x+{{x}^{3}}}\]
    \[\Rightarrow \]   \[\frac{dy}{dx}=\frac{-\,[1+y(1+{{x}^{2}})]}{x(1+{{x}^{2}})}\]
    \[\Rightarrow \]   \[\frac{dy}{dx}=\frac{-\,1}{x(1+{{x}^{2}})}-\frac{y(1+{{x}^{2}})}{x(1+{{x}^{2}})}\]
    \[\Rightarrow \]                 \[\frac{dy}{dx}+\frac{y}{x}=\frac{-\,1}{x(1+{{x}^{2}})}\]                   ?(i)
    Which is a linear differential equation of the form
                \[\frac{dy}{dx}+Py=Q\]                                      ?(ii)
    where, \[P=\frac{1}{x}\] and \[Q=\frac{-\,1}{x(1+{{x}^{2}})}\]
    Now,     \[IF={{e}^{\int{Pdx}}}={{e}^{\int{\frac{1}{x}dx}}}={{e}^{\log \,\,x}}=x\]
    Hence, its solution is given by
    \[y\cdot IF=\int{(Q\cdot IF)\,dx}+C\]
                \[yx=\int{\frac{-\,1}{x(1+{{x}^{2}})}\cdot x\,dx+C}\]
    \[\Rightarrow \]   \[yx=\int{\frac{-\,1}{1+{{x}^{2}}}dx+C}\]
    \[\Rightarrow \]   \[yx={{\cot }^{-1}}x+C\]                                           \[\left[ \because \,\,\int{\frac{-\,1}{1+{{x}^{2}}}dx={{\cot }^{-1}}x} \right]\]
    \[\therefore \]      \[y=\frac{{{\cot }^{-1}}x+C}{x}\]
    Which is the required solution.    


You need to login to perform this action.
You will be redirected in 3 sec spinner