A) \[\frac{{{Q}_{0}}}{2N}\sqrt{\frac{3L}{C}}\]
B) \[\frac{{{Q}_{0}}}{N}\sqrt{\frac{3L}{C}}\]
C) \[\frac{2{{Q}_{0}}}{N}\sqrt{\frac{L}{C}}\]
D) \[\frac{{{Q}_{0}}}{N}\sqrt{\frac{L}{C}}\]
Correct Answer: A
Solution :
[a] \[Q={{Q}_{0}}\cos (\omega t)\] where \[\omega =\frac{1}{\sqrt{LC}}\] When \[Q=\frac{{{Q}_{0}}}{1};\] \[\cos \,(\omega t)=\frac{1}{2}\] Flux linked to the coil is \[\phi =LI=L\frac{dQ}{dt}\] \[\therefore \,\,\,\,\,\,\,\,\,|\phi |=L{{Q}_{0}}\omega |\sin (\omega t)|\] When \[\cos \,(\omega t)=\frac{1}{2};\,\,\sin (\omega t)=\frac{\sqrt{3}}{2}\] \[\therefore \,\,\,\,\,|\phi |=\frac{\sqrt{3}}{2}L{{Q}_{0}}\omega \] Flux through each turn \[\frac{|\phi |}{N}=\frac{\sqrt{3}L{{Q}_{0}}\omega }{2N}=\frac{1}{2}\sqrt{\frac{3L}{C}}\frac{{{Q}_{0}}}{N}\]You need to login to perform this action.
You will be redirected in
3 sec