Manipal Engineering Manipal Engineering Solved Paper-2012

  • question_answer
    Let\[\lambda \]and\[\alpha \]be real                 \[\lambda x+\sin \alpha \cdot y+\cos \alpha \cdot z=0\],                 \[x+\cos \alpha \cdot y+\sin \alpha \cdot z=0\],                 \[-x+\sin \alpha \cdot y-\cos \alpha \cdot z=0\] has a non-trivial solution. If\[\lambda =1\], then all the values of a is equals

    A) \[n\pi +\frac{\pi }{2}\]                  

    B) \[n\pi +\frac{\pi }{4},\,\,n\pi \]

    C) \[n\pi +\frac{\pi }{2}\]  

    D)        \[n\pi +\frac{\pi }{4},\,\,\frac{\pi }{4}\]

    Correct Answer: B

    Solution :

    The given system has a non-trivial solution, if                 \[\left| \begin{matrix}    \lambda  & \sin \alpha  & \cos \alpha   \\    1 & \cos \alpha  & \sin \alpha   \\    -1 & \sin \alpha  & -\cos \alpha   \\ \end{matrix} \right|=0\] By expanding the determinant along\[({{C}_{1}})\], we get \[\lambda (-{{\cos }^{2}}ga-{{\sin }^{2}}\alpha )-1(-\sin \alpha \cos \alpha \]                                                 \[-\sin \alpha \cos \alpha )\]                 \[-1({{\sin }^{2}}\alpha -{{\cos }^{2}}\alpha )=0\] For         \[\lambda =1,\,\,\sin 2\alpha +\cos 2\alpha =1\] \[\Rightarrow \]               \[\frac{1}{\sqrt{2}}\sin 2\alpha +\frac{1}{\sqrt{2}}\cos 2\alpha =\frac{1}{\sqrt{2}}\] \[\Rightarrow \]               \[\cos \left( 2\alpha -\frac{\pi }{4} \right)=\cos \left( 2n\pi \pm \frac{\pi }{4} \right)\] \[\Rightarrow \]\[2\alpha =2n\pi \pm \frac{\pi }{4}+\frac{\pi }{4},\,\,n\]being an integer. \[\Rightarrow \]               \[\alpha =n\pi +\frac{\pi }{4},\,\,n\pi \]


You need to login to perform this action.
You will be redirected in 3 sec spinner