Manipal Engineering Manipal Engineering Solved Paper-2009

  • question_answer
    If\[x,\,\,y,\,\,z\]are all positive and are the\[pth,\,\,qth\]and\[rth\]terms  of a geometric progression respectively, then the value of the determinant                                 \[\left| \begin{matrix}    \log x & p & 1  \\    \log y & q & 1  \\    \log z & r & 1  \\ \end{matrix} \right|\] equals

    A) \[\log xyz\]

    B) \[(p-1)(q-1)(r-1)\]

    C) \[pqr\]

    D) \[0\]

    Correct Answer: D

    Solution :

    Let\[a\]and\[R\]be the first term and common ratio of a\[GP\]. \[\therefore \]  \[{{T}_{p}}=a{{R}^{p-1}}=x\]                 \[{{T}_{q}}=a{{R}^{q-1}}=y\] and        \[{{T}_{r}}=a{{R}^{r-1}}=z\] \[\Rightarrow \]               \[\log x=\log a+(p-1)\log R\]                 \[\log y=\log a+(q-1)\log R\] and        \[\log z=\log a+(r-1)\log R\] \[\therefore \left| \begin{matrix}    \log x & p & 1  \\    \log y & q & 1  \\    \log z & r & 1  \\ \end{matrix} \right|=\left| \begin{matrix}    \log a+(p-1) & \log R & p\,\,1  \\    \log a+(q-1) & \log R & q\,\,1  \\    \log a+(r-1) & \log R & r\,\,1  \\ \end{matrix} \right|\] \[=\left| \begin{matrix}    \log a & p & 1  \\    \log a & q & 1  \\    \log a & r & 1  \\ \end{matrix} \right|+\left| \begin{matrix}    (p-1) & \log R & p\,\,\,1  \\    (q-1) & \log R & q\,\,\,1  \\    (r-1) & \log R & r\,\,\,1  \\ \end{matrix} \right|\] \[=\log a\left| \begin{matrix}    1 & p & 1  \\    1 & q & 1  \\    1 & r & 1  \\ \end{matrix} \right|+\log R\left| \begin{matrix}    p-1 & p-1 & 1  \\    q-1 & q-1 & 1  \\    r-1 & r-1 & 1  \\ \end{matrix} \right|\]                                                 \[({{C}_{2}}\to {{C}_{2}}-{{C}_{3}})\] \[=0+0=0\](\[\because \] two columns are identical)


You need to login to perform this action.
You will be redirected in 3 sec spinner