JEE Main & Advanced JEE Main Paper (Held On 19 May 2012)

  • question_answer
    Suppose \[\theta \] and \[\phi (\ne 0)\] are such that \[(\theta +\phi ),\sec \theta \]and \[\sec (\theta -\phi )\] are in A.P. If \[\cos \theta =k\cos \left( \frac{\phi }{2} \right)\] for some k, then A; is equal to     JEE Main  Online Paper (Held On 19  May  2012)

    A) \[\pm \sqrt{2}\]                                              

    B)                        \[\pm 1\]

    C)                        \[\pm \frac{1}{\sqrt{2}}\]                            

    D)                        \[\pm 2\]

    Correct Answer: A

    Solution :

                    Since, \[\sec (\theta -\phi ),\sec \theta \]and \[\sec (\theta +\phi )\]are in A.P., \[\therefore \]\[2\sec \theta =\sec (\theta -\phi )+\sec (\theta +\phi )\] \[\Rightarrow \]\[\frac{2}{\cos \theta }=\frac{\cos (\theta +\phi )+\cos (gq-\phi )}{\cos (\theta -\phi )\cos (\theta +\phi )}\] \[\Rightarrow \]\[^{2}\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\phi  \right)=\cos \theta [2\cos \theta \cos \phi ]\] \[\Rightarrow \]\[{{\cos }^{2}}\theta \left( 1-\cos \,\phi  \right)={{\sin }^{2}}\phi =1-{{\cos }^{2}}\phi \] \[\Rightarrow \]\[{{\cos }^{2}}\theta =1+\cos \phi =2{{\cos }^{2}}\frac{\phi }{2}\] \[\therefore \]\[\cos \theta =\sqrt{2}\cos \frac{\phi }{2}\] But given \[\cos \theta =k\cos \frac{\phi }{2}\] \[\therefore \]\[k=\sqrt{2}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner