JCECE Engineering JCECE Engineering Solved Paper-2005

  • question_answer
    The point on the curve \[x{{y}^{2}}=1\] that is nearest to the origin, is:

    A) \[(1,\,\,1)\]                                        

    B) \[(4,\,\,1/2)\]

    C) \[(5/4,\,\,1)\]                   

    D) \[(3/4,\,\,5/2)\]

    Correct Answer: D

    Solution :

    Key Idea: If \[({{x}_{1}},\,\,{{y}_{1}})\] is a point on the curve, then the nearest distance in which \[\frac{dy}{d{{x}_{({{x}_{1}},\,\,{{y}_{1}})}}}=0\] Let \[P(x,\,\,y)\] be a point on the curve. Given curve is    \[x\,\,{{y}^{2}}=1\]                         ... (i) Again, let d be the distance from origin to the curve \[\therefore \]  \[{{d}^{2}}={{x}^{2}}+{{y}^{2}}\] \[\Rightarrow \]               \[D={{x}^{2}}+\frac{1}{x}\]                          (let\[{{d}^{2}}=D)\] On differentiating w.r.t.\[x,\] we get           \[\frac{dD}{dx}=2x-\frac{1}{{{x}^{2}}}\] For maxima or minima, put\[\frac{dD}{dx}=0\] \[\Rightarrow \]               \[2x-\frac{1}{{{x}^{2}}}=0\] \[\Rightarrow \]               \[{{x}^{3}}=\frac{1}{2}\Rightarrow x={{\left( \frac{1}{2} \right)}^{1/3}}\] Again differentiating Eq. (ii), we get           \[\frac{{{d}^{2}}D}{d{{x}^{2}}}=2+\frac{2}{{{x}^{3}}}\] At\[x={{\left( \frac{1}{2} \right)}^{1/3}},\,\,\frac{{{d}^{2}}D}{d{{x}^{2}}}>0\]\[i.e.,\] minima. On putting the value of \[x\] in Eq. (i), we get                 \[{{y}^{2}}=\frac{1}{{{\left( \frac{1}{2} \right)}^{1/3}}}\] \[\Rightarrow \]               \[y={{(2)}^{1/6}}\] \[\therefore \]Required point is\[\left( {{\left( \frac{1}{2} \right)}^{1/3}},\,\,{{(2)}^{1/6}} \right)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner