JAMIA MILLIA ISLAMIA Jamia Millia Islamia Solved Paper-2004

  • question_answer
        Let   n   be   an   odd   integer.   If \[\sum\limits_{r=0}^{n}{^{n+r}{{C}_{n}}}\]for every value of \[^{n+m+1}{{C}_{n+1}}\],then:

    A)  \[^{n+m+2}{{C}_{n}}\]

    B)  \[^{n+m+3}{{C}_{n-1}}\]

    C)  \[{{x}^{-7}}\]

    D)  \[{{\left[ ax-\frac{1}{b{{x}^{2}}} \right]}^{11}}\]

    Correct Answer: B

    Solution :

                    Given \[\sin n\theta =\sum\limits_{r=0}^{n}{{{b}_{r}}{{\sin }^{r}}\theta }\] \[\Rightarrow \]\[\sin n\theta ={{b}_{0}}{{\sin }^{0}}\theta +{{b}_{1}}{{\sin }^{1}}\theta +{{b}^{2}}{{\sin }^{2}}\theta \]                                                 \[+....+{{b}_{n}}{{\sin }^{n}}\theta \] \[\Rightarrow \]\[\sin n\theta ={{b}_{0}}+{{b}_{1}}\sin \theta +....+{{b}^{n}}{{\sin }^{n}}\theta \] \[\because \]\[\sin n\theta {{=}^{n}}{{C}_{1}}\sin \theta {{\cos }^{n-1}}\theta \]                                 \[{{-}^{n}}{{C}_{3}}{{\sin }^{3}}\theta {{\cos }^{n-3}}\theta +......\] \[{{=}^{n}}{{C}_{1}}\sin \theta {{(1-{{\sin }^{2}}\theta )}^{(n-1)/2}}\]                 \[{{-}^{n}}{{C}_{3}}{{\sin }^{3}}\theta {{(1-{{\sin }^{2}}\theta )}^{(n-3)/2}}+....\] \[\therefore \]  \[{{b}_{0}}=0,\] \[{{b}_{1}}=\]coefficient of\[\sin \theta {{=}^{n}}{{C}_{1}}=n\] (\[\because \]\[n-1,\text{ }n-3\]are all even integer)


You need to login to perform this action.
You will be redirected in 3 sec spinner