CEE Kerala Engineering CEE Kerala Engineering Solved Paper-2006

  • question_answer
    \[{{I}_{n}}=\int_{0}^{\pi /4}{{{\tan }^{n}}x}dx,\]then \[\underset{n\to \infty }{\mathop{\lim }}\,n[{{I}_{n}}+{{I}_{n+2}}]\]equal is:

    A)  \[\frac{1}{2}\]                  

    B)         1

    C)  \[\infty \]                          

    D)         zero

    E)  none of these

    Correct Answer: C

    Solution :

     \[\because \]\[{{I}_{n}}=\int_{0}^{\pi /4}{{{\tan }^{n}}x}dx\] \[\therefore \]\[{{I}_{n+2}}=\int_{0}^{\pi /4}{{{\tan }^{n}}x(1+{{\tan }^{2}}x)dx}\] Now, \[{{I}_{n}}+{{I}_{n+2}}=\int_{0}^{\pi /4}{{{\tan }^{n}}x(1+{{\tan }^{2}}x)dx}\]                 \[=\int_{0}^{\pi /4}{{{\sec }^{2}}x{{\tan }^{n}}x\,dx}\] Let \[tan\text{ }x=t\] \[\Rightarrow \]\[{{\sec }^{2}}xdx=dt\] \[\therefore \]\[{{I}_{n}}+{{I}_{n+2}}=\int_{0}^{1}{{{t}^{n}}dt}\] \[=\left[ \frac{{{t}^{n+1}}}{n+1} \right]_{0}^{1}=\frac{1}{n+1}\] Hence, \[\underset{n\to \infty }{\mathop{\lim }}\,[{{I}_{n}}+{{I}_{n+2}}]=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+1}\] \[=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{1+\frac{1}{n}}=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner