BHU PMT BHU PMT Solved Paper-2001

  • question_answer
    An ideal transformer has a primary power input of 10 kW. The secondary current when the Transformer is on load is 25 A. If the primary Secondary turns ratio is 8 : 1, then the potential Difference applied in the primary coil will be:

    A)  \[\frac{{{\left( 10 \right)}^{4}}}{25{{\left( 8 \right)}^{2}}}V\]                      

    B)  \[\frac{{{10}^{4}}}{\left( 25 \right)\left( 8 \right)}V\]

    C)  \[\frac{{{\left( 10 \right)}^{4}}\,8}{25}V\]                            

    D)  \[\frac{{{\left( 10 \right)}^{4}}\,{{\left( 8 \right)}^{2}}}{25}V\]

    Correct Answer: C

    Solution :

    Transformer works on the principle of mutual induction. Power in the secondary = Power in the primary \[{{V}_{s}}\times {{i}_{s}}={{V}_{p}}\times {{i}_{p}}\] Where \[{{i}_{s}}\],\[{{i}_{p}}\] are currents in the secondary and primary and \[{{V}_{s}}\] and \[{{V}_{p}}\] are voltages across secondary and primary respectively. Also, \[\frac{{{i}_{p}}}{{{i}_{s}}}=\frac{{{V}_{s}}}{{{V}_{p}}}=\frac{{{N}_{s}}}{{{N}_{p}}}=r=\] transformation ratio Given, \[{{P}_{p}}=10\,kW=10\times {{10}^{3}}\,\,W={{10}^{4}}\,W\] \[{{i}_{s}}=25\,A\] \[{{N}_{p}}:{{N}_{s}}=8:1\] Then, \[\frac{{{i}_{s}}}{{{i}_{p}}}=\frac{{{N}_{p}}}{{{N}_{s}}}=\frac{8}{1}\] \[\Rightarrow \]                               \[{{i}_{p}}=\frac{{{i}_{s}}}{8}=\frac{25}{8}A.\] Also,                      \[{{10}^{4}}={{V}_{p}}{{i}_{p}}\]                        \[\left( P=Vi \right)\] \[\Rightarrow \]                               \[{{V}_{p}}=\frac{{{10}^{4}}}{25/8}={{10}^{4}}\left( \frac{8}{25} \right)V\]


You need to login to perform this action.
You will be redirected in 3 sec spinner