BCECE Engineering BCECE Engineering Solved Paper-2015

  • question_answer
    For real \[x\], let \[f(x)={{x}^{3}}+5x+1,\] then

    A) f is one-one but not onto R

    B) f is onto R but not one-one

    C) f is one-one and onto R

    D) f is neither one-one nor onto R

    Correct Answer: C

    Solution :

    Let, \[x,y\in R\]be such that \[f(x)=f(y)\] \[\Rightarrow \]               \[{{x}^{3}}+5x+1={{y}^{3}}+5y+1\] \[\Rightarrow \]               \[({{x}^{3}}-{{y}^{3}})+5(x-y)=0\] \[\Rightarrow \]               \[(x-y)({{x}^{2}}+xy+{{y}^{2}}+5)=0\] \[\Rightarrow \]               \[(x-y)\left\{ {{\left( x+\frac{y}{2} \right)}^{2}}+\frac{3{{y}^{2}}}{4}+5 \right\}=0\] \[\Rightarrow \]               \[x=y\] \[\left[ \because {{\left( x+\frac{y}{2} \right)}^{2}}+\frac{3{{y}^{2}}}{4}+5\ne 0 \right]\]                 \[\therefore \]  \[f:R\to R\]is one Let y be an arbitrary element in R (codomain) .Then, \[f(x)=y,i.e.{{x}^{3}}+5x+1=y\]has atleast one real root, say \[\alpha \]in R. \[\therefore \]  \[{{\alpha }^{3}}+5\alpha +1=y\]   \[\Rightarrow f(\alpha )=y\] Thus, for each \[y\in R\]there exists \[\alpha \in R\]such that \[f(\alpha )=y.\]So, \[f:R\to R\]is onto. Hence, \[f:R\to R\]is one-one and onto. 


You need to login to perform this action.
You will be redirected in 3 sec spinner