BCECE Engineering BCECE Engineering Solved Paper-2015

  • question_answer
    A differentiable function \[f(x)\]has a relative minimum at \[x=0\], then the function\[y=f(x)+ax+b\]has a relative minimum at \[x=0\] for

    A) all a and All B    

    B) all b, if \[a=0\]

    C) all \[b>0\]                          

    D) all \[a>0\]

    Correct Answer: B

    Solution :

    Since, f(x) has a relative minimum at x = 0. Therefore, \[f'(0)=0\] and\[f''(0)>0\]. If the function \[y=f(x)+ax+b\]has a relative minimum at \[x\text{ }=\text{ }0\], then \[\frac{dy}{dx}=0\text{ }at\text{ }x\text{ }=\text{ }0\]                 \[\Rightarrow \]               \[f'(x)+a=0\] for \[x=0\]                 \[\Rightarrow \]               \[f'(0)+a=0\]                 \[\Rightarrow \]               \[0+a=0\]                 \[\Rightarrow \]               \[a=0\]                                 \[[\because f'(0)=0]\]                 Now,                     \[\frac{{{d}^{2}}y}{d{{x}^{2}}}=f''(x)\] \[{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}_{x=0}}=f''(0)>0\]                  \[[\because f''(0)>0]\] Hence, y has relative minimum at x = 0, if a = 0 and b can attain any real value.


You need to login to perform this action.
You will be redirected in 3 sec spinner