BCECE Engineering BCECE Engineering Solved Paper-2015

  • question_answer
    If \[f(x)=\left\{ \frac{1-\sin x}{{{(\pi -2x)}^{2}}}.\frac{\log \sin x}{\log (1+{{\pi }^{2}}-4\pi x+{{x}^{2}})'k,} \right\}\] \[x\ne \frac{\pi }{2}\] \[x=\frac{\pi }{2}\]                 Is continuous at \[x=\frac{\pi }{2},\]then \[k\]is equal to

    A)                 \[-\frac{1}{16}\]                               

    B) \[-\frac{1}{32}\]

    C)                 \[-\frac{1}{64}\]

    D) \[-\frac{1}{28}\]

    Correct Answer: C

    Solution :

    For \[f(x)\] to be continuous at \[x=\frac{\pi }{2},\] we must have \[\underset{x\to \pi /2}{\mathop{\lim }}\,f(x)=f(\pi /2)\] \[\Rightarrow \]\[\underset{x\to \pi /2}{\mathop{\lim }}\,\frac{1-\sin x}{(\pi =2{{x}^{2}})}.\frac{\log (\sin x)}{\log (1+{{\pi }^{2}}-4\pi x+4{{x}^{2}})}=k\] \[\Rightarrow \]               \[\underset{h\to 0}{\mathop{\lim }}\,\frac{1-\cosh }{4{{h}^{2}}}\times \frac{\log \cosh }{\log (1+4{{h}^{2}})}=k\] \[\Rightarrow \]               \[\underset{h\to 0}{\mathop{\lim }}\,\frac{1-\cosh }{4{{h}^{2}}}\times \frac{\log \{1+\cosh -1\}}{\cosh -1}\]                                 \[\times \frac{4{{h}^{2}}}{\log (1+4{{h}^{2}})}\times \frac{\cosh -1}{4{{h}^{2}}}=k\] \[\Rightarrow \]               \[\underset{h\to 0}{\mathop{\lim }}\,{{\left( \frac{1-\cosh }{4{{h}^{2}}} \right)}^{2}}\frac{\log (1+(\cosh -1))}{\cosh -1}\] \[\times \frac{4{{h}^{2}}}{\log (1+4{{h}^{2}})}=k\]                 \[\Rightarrow \]               \[-\underset{h\to 0}{\mathop{\lim }}\,{{\left( \frac{{{\sin }^{2}}h/2}{2{{h}^{2}}} \right)}^{4}}\frac{\log (1+(\cosh -1))}{\cosh -1}\]                                                                 \[\times \frac{4{{h}^{2}}}{\log (1+4{{h}^{2}})}=k\]                 \[\Rightarrow \]               \[-\frac{1}{64}\underset{h\to 0}{\mathop{\lim }}\,{{\left( \frac{\sinh /2}{h/2} \right)}^{4}}\frac{\log (1+(\cosh -1))}{\cosh -1}\]                                 \[\times \frac{4{{h}^{2}}}{\log (1+4{{h}^{2}})}=k\]                 \[\Rightarrow \]               \[-\frac{1}{64}=k\]                


You need to login to perform this action.
You will be redirected in 3 sec spinner