BCECE Engineering BCECE Engineering Solved Paper-2015

  • question_answer
    If \[\alpha \]and \[\beta \]are non-real numbers satisfying \[{{x}^{3}}-1=0,\]then the value of \[\left| \begin{matrix}    \lambda +1 & \alpha  & \beta   \\    \alpha  & \lambda +\beta  & 1  \\    \beta  & 1 & \lambda +\alpha   \\ \end{matrix} \right|\] is

    A)  0                                           

    B) \[{{\lambda }^{3}}\]

    C) \[{{x}^{2}}+2bx+4=0\] 

    D) \[{{x}^{2}}-bx+1=0\]

    Correct Answer: B

    Solution :

    It is given that \[\alpha \] and \[\beta \] are the non-real roots of the equation\[{{x}^{3}}-1=0\].                         We have, \[{{x}^{3}}-1=0\] \[\Rightarrow \]\[{{x}^{3}}=1\] \[\Rightarrow \]\[x=1,\omega ,{{\omega }^{2}}\] Hence,     \[\alpha =\omega \] and \[\beta ={{\omega }^{2}}\] Now,     \[\left| \begin{matrix}    \lambda +1 & \alpha  & \beta   \\    \alpha  & \lambda +\beta  & 1  \\    \beta  & 1 & \lambda +\alpha   \\ \end{matrix} \right|\] \[=\left| \begin{matrix}    \lambda +1+\alpha +\beta  & \lambda +1+\alpha +\beta  & \lambda +1+a+\beta   \\    \alpha  & \alpha +\beta  & 1  \\    \beta  & 1 & \lambda +\alpha   \\ \end{matrix} \right|\]                                                 \[[\because {{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}]\] \[=(\lambda +1+\alpha +\beta )\left| \begin{matrix}    0 & 0 & 1  \\    \alpha -\lambda -\beta  & \lambda +\beta -1 & 1  \\    \beta -1 & 1-\lambda -\alpha  & \lambda +\alpha   \\ \end{matrix} \right|\]                 \[[\because {{C}_{1}}\to {{C}_{1}}-{{C}_{2}},{{C}_{2}}\to {{C}_{2}}-{{C}_{3}}]\] \[=(\lambda +1+\alpha +\beta ).1[(\alpha -\lambda -\beta )(1-\lambda -\alpha )\]                                 \[-(\beta -1)(\lambda +\beta -1)]\] \[=(\lambda +1+\alpha +\beta )(\alpha -{{\alpha }^{2}}+{{\lambda }^{2}}+\alpha \beta -{{\beta }^{2}}+\beta -1)\] \[(\lambda +1+\omega +{{\omega }^{2}})(\omega -{{\omega }^{2}}+{{\lambda }^{2}}+{{\omega }^{3}}-{{\omega }^{4}}+{{\omega }^{2}}-1)\]                    [putting \[\alpha =\omega \]and \[\beta ={{\omega }^{2}}\]] \[=\lambda (\omega -{{\omega }^{2}}+{{\lambda }^{2}}+1-\omega +{{\omega }^{2}}-1)\] \[={{\lambda }^{3}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner