NEET AIPMT SOLVED PAPER SCREENING 2007

  • question_answer
                    A particle moving along \[x\]-axis has acceleration \[f\], at time t, given by \[f={{f}_{0}}\left( 1-\frac{t}{T} \right)\], where \[{{f}_{0}}\] and T are constants. The particle at t = 0 has zero velocity. In the time interval between t = 0 and the instant when \[f=0\], the particle's velocity \[({{v}_{x}})\] is:                                                                                                        

    A)                  \[{{f}_{0}}T\]                    

    B)                  \[\frac{1}{2}{{f}_{0}}{{T}^{2}}\]

    C)                  \[{{f}_{0}}{{T}^{2}}\]     

    D)                  \[\frac{1}{2}{{f}_{0}}T\]

    Correct Answer: D

    Solution :

                    Acceleration                 \[f={{f}_{0}}\left( 1-\frac{t}{T} \right)\] \[orf=\frac{dv}{dt}={{f}_{0}}\left( 1-\frac{t}{T} \right)\,\left[ \because \,f=\frac{dv}{dt} \right]\] \[ordv={{f}_{0}}\left( 1-\frac{t}{T} \right)dt...(i)\]                 Integrating Eq. (i) on both sides,                 \[\int{dv=\int{{{f}_{0}}\left( 1-\frac{t}{T} \right)\,dT}}\]                 \[\therefore v={{f}_{0}}t-\frac{{{f}_{0}}}{T}.\frac{{{t}^{2}}}{2}+C....(ii)\]                 where C is constant of integration.                 Now, when t = 0, v = 0                 So, from Eq. (ii), we get C = 0                 \[\therefore v={{f}_{0}}t-\frac{{{f}_{0}}}{T}.\frac{{{t}^{2}}}{2}....(iii)\] As,          \[f={{f}_{0}}\left( 1-\frac{t}{T} \right)\] When,    \[f=0,\,\,0={{f}_{0}}\left( 1-\frac{t}{T} \right)\] As,          \[{{f}_{0}}\ne 0\]so, \[1-\frac{t}{T}=0\,\therefore \,\,t=T\]                 Substituting, t = T in Eq. (iii), then velocity                 \[{{v}_{x}}={{f}_{0}}T-\frac{{{f}_{0}}}{T}.\frac{{{T}^{2}}}{2}\]                 \[={{f}_{0}}T-\frac{{{f}_{0}}T}{2}=\frac{1}{2}\,{{f}_{0}}T\]


You need to login to perform this action.
You will be redirected in 3 sec spinner