AIIMS AIIMS Solved Paper-2008

  • question_answer
    A particle of mass m is executing oscillations about the origin on the x-axis. Its potential energy is \[U(x)\,=k{{[x]}^{3}},\] where k is a positive constant. If the amplitude of oscillation is a, then its time period T is

    A)  proportional to \[51{{m}^{2}}/{{s}^{2}}\]            

    B)  independent of \[521{{m}^{2}}/{{s}^{2}}\]

    C)  proportional to \[\frac{1}{\sqrt{a}}\]     

    D)  proportional to \[a\]

    Correct Answer: A

    Solution :

    \[\Rightarrow \]  \[\frac{1}{T}=\frac{1}{{{T}_{1}}}+\frac{1}{{{T}_{2}}}\]  \[\therefore \] \[T=\frac{{{T}_{1}}\times {{T}_{2}}}{{{T}_{1}}+{{T}_{2}}}=\frac{810\times 1620}{810+1620}=540yr\]                    ?.(i) Also, for SHM \[\frac{1}{4}th\] and   \[hv-{{W}_{0}}=\frac{1}{2}mv_{\max }^{2}\] \[\Rightarrow \] acceleration, \[\frac{hc}{\lambda }-\frac{hc}{{{\lambda }_{0}}}=\frac{1}{2}mv_{\max }^{2}\] \[\Rightarrow \]  \[hc\left( \frac{{{\lambda }_{0}}-\lambda }{\lambda {{\lambda }_{0}}} \right)=\frac{1}{2}mv_{\max }^{2}\] \[{{v}_{\max }}=\sqrt{\frac{2hc}{m}\left( \frac{{{\lambda }_{0}}-\lambda }{\lambda .{{\lambda }_{0}}} \right)}\] \[\lambda \]            ?.(ii) From Eqs. (i) and (ii), we get \[v=\sqrt{\frac{2hc}{m}\left( \frac{{{\lambda }_{0}}-\lambda }{\lambda {{\lambda }_{0}}} \right)}\] \[\frac{3\lambda }{4}\]   \[v,\] \[=2\pi \,\sqrt{\frac{m}{3k\,(a\,\sin \omega t)}}\] \[\frac{v}{v}=\sqrt{\frac{[{{\lambda }_{0}}-(3\lambda /4)]}{\frac{3}{4}\lambda {{\lambda }_{0}}}\times \frac{\lambda {{\lambda }_{0}}}{{{\lambda }_{0}}-\lambda }}\]   \[v=v{{\left( \frac{4}{3} \right)}^{1/2}}\sqrt{\frac{[{{\lambda }_{0}}-(3\lambda /4)]}{{{\lambda }_{0}}-\lambda }}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner