AIIMS AIIMS Solved Paper-2006

  • question_answer
    Circular loop of a wire and   a long straight wire carry Wire currents \[{{I}_{c}}\] and \[{{I}_{e}}\] respectively as shown in figure. Assuming that these are placed in the same plane. The magnetic field will be zero at the centre of the   loop   when   the    Straight  separation H is:

    A) \[\frac{{{I}_{e}}R}{{{I}_{c}}\pi }\]

    B)                       \[\frac{{{I}_{c}}R}{{{I}_{e}}\pi }\]                             

    C) \[\frac{\pi {{I}_{c}}}{{{I}_{e}}R}\]                             

    D)       \[\frac{{{I}_{e}}\pi }{{{I}_{c}}R}\]

    Correct Answer: A

    Solution :

                    Magnetic field at the centre O of the loop of radius R is given by \[{{B}_{1}}=\frac{{{\mu }_{0}}{{I}_{c}}}{2R}\] where \[{{I}_{c}}\] is the current flowing in the loop. Magnetic field due to straight current carrying wire at a distance H, i.e., at the point O is given by \[{{B}_{2}}=\frac{{{\mu }_{0}}{{I}_{c}}}{2\pi H}\] For magnetic field to be zero at the centre of the loop, \[{{B}_{1}}={{B}_{2}}\] i.e.,   \[\frac{{{\mu }_{0}}{{I}_{c}}}{2R}=\frac{{{\mu }_{0}}{{I}_{c}}}{2\pi H}\] \[\Rightarrow \]  \[H=\frac{{{I}_{e}}R}{\pi {{I}_{c}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner