JEE Main & Advanced AIEEE Solved Paper-2003

  • question_answer
    \[\underset{x\to \infty }{\mathop{\lim }}\,\frac{1+{{2}^{4}}+{{3}^{4}}+....+{{n}^{4}}}{{{n}^{5}}}\]                                                                             \[-\underset{x\to \infty }{\mathop{\lim }}\,\frac{1+{{2}^{3}}+{{3}^{3}}+....+{{n}^{3}}}{{{n}^{5}}}\] is

    A)          1/30                     

    B) 0                             

    C) 1/4        

    D)       1/5

    Correct Answer: D

    Solution :

    \[\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{r=1}^{n}{{{\left( \frac{r}{n} \right)}^{4}}}=\int_{0}^{1}{{{x}^{4}}dx}\] Now,         \[\underset{n\to \infty }{\mathop{\lim }}\,=\frac{1+{{2}^{4}}+{{3}^{4}}+....+{{n}^{4}}}{{{n}^{5}}}\]                                     \[-\underset{n\to \infty }{\mathop{\lim }}\,\frac{1+{{2}^{3}}+{{3}^{3}}+.....+{{n}^{3}}}{{{n}^{5}}}\] \[=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{r=1}^{n}{{{\left( \frac{r}{n} \right)}^{4}}}-\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\times \underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{r=1}^{n}{{{\left( \frac{r}{n} \right)}^{3}}}\] \[=\int_{0}^{1}{{{x}^{4}}dx-}\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\times \int_{0}^{1}{{{x}^{3}}dx=}\left[ \frac{{{x}^{5}}}{5} \right]_{0}^{1}-0=\frac{1}{5}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner