JEE Main & Advanced AIEEE Solved Paper-2002

  • question_answer
    \[{{I}_{n}}=\int_{0}^{\pi /4}{{{\tan }^{n}}\,x\,dx,}\] , then    \[\underset{x\to \infty }{\mathop{\lim }}\,n\,[{{I}_{n}}+{{I}_{n+2}}]\] equals   AIEEE  Solved  Paper-2002

    A) \[\frac{1}{2}\]     

    B)                                           1  

    C)           \[\infty \]               

    D)                           zero

    Correct Answer: B

    Solution :

                       Since, \[{{l}_{n}}=\int_{0}^{\pi /4}{{{\tan }^{n}}x\,dx}\] \[\therefore \]     \[{{l}_{n+2}}=\int_{0}^{\pi /4}{{{\tan }^{n+2}}xdx}\] Now, \[{{l}_{n}}+{{l}_{n+2}}=\int_{0}^{\pi /4}{{{\tan }^{n}}xdx+\int_{0}^{\pi /4}{{{\tan }^{n+2}}xdx}}\]                    \[=\int_{0}^{\pi /4}{{{\tan }^{n}}x(1+{{\tan }^{2}}x)dx}\]                    \[=\int_{0}^{\pi /4}{{{\sec }^{2}}x{{\tan }^{n}}xdx}\] Put \[\tan x=t\Rightarrow {{\sec }^{2}}xdx=dt\] \[\therefore {{l}_{n}}+{{l}_{n+2}}=\int_{0}^{1}{{{t}^{n}}\,dt=\left[ \frac{{{t}^{n+1}}}{n+1} \right]_{0}^{1}=\frac{1}{n+1}}\] \[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\,n[{{l}_{n}}+{{l}_{n}}]=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+1}\]                                    \[=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{1+\frac{1}{n}}=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner