If \[x=\frac{1}{2+\sqrt{3}},\] find the value of \[{{x}^{3}}-{{x}^{2}}-11x+3\]
A)
0
done
clear
B)
3
done
clear
C)
x
done
clear
D)
x+3
done
clear
View Answer play_arrow
If \[x=3\sqrt{3}+\sqrt{26}\] find the value of \[\frac{1}{2}\left( x+\frac{1}{x} \right)\]
A)
\[\frac{1}{2}\]
done
clear
B)
\[\sqrt{3}\]
done
clear
C)
3
done
clear
D)
\[3\sqrt{3}\]
done
clear
View Answer play_arrow
If \[x=2+{{2}^{1/3}}+{{2}^{2/3}}\] find \[{{x}^{3}}-6{{x}^{2}}+6x-2.\]
A)
0
done
clear
B)
1
done
clear
C)
2
done
clear
D)
6
done
clear
View Answer play_arrow
Express \[1.272727.....=1.\overline{27}\] in the form \[\frac{p}{q},\]where p and q are integers and \[q\ne 0.\]
A)
\[\frac{1}{27}\]
done
clear
B)
\[\frac{1}{11}\]
done
clear
C)
\[\frac{14}{11}\]
done
clear
D)
\[\frac{14}{27}\]
done
clear
View Answer play_arrow
The value of x, when \[{{2}^{x+4}}{{.3}^{x+1}}=288.\]
A)
1
done
clear
B)
\[-1\]
done
clear
C)
0
done
clear
D)
None
done
clear
View Answer play_arrow
When simplified the product \[\left( 1+\frac{1}{2} \right)\left( 1+\frac{1}{3} \right)\left( 1+\frac{1}{4} \right).....\left( 1+\frac{1}{n} \right)\] becomes
A)
\[n\]
done
clear
B)
\[\frac{n-1}{2}\]
done
clear
C)
\[\frac{n+1}{2}\]
done
clear
D)
\[\frac{n}{2}\]
done
clear
View Answer play_arrow
If \[a=2+\sqrt{3}\] and & \[b=2-\sqrt{3}\] then \[\frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}\] is equal to
A)
14
done
clear
B)
\[-14\]
done
clear
C)
\[8\sqrt{3}\]
done
clear
D)
\[-8\sqrt{3}\]
done
clear
View Answer play_arrow
Rationalizing factor of \[(2+\sqrt{3})=\]
A)
\[2-\sqrt{3}\]
done
clear
B)
\[\sqrt{3}\]
done
clear
C)
\[2+\sqrt{3}\]
done
clear
D)
\[3+\sqrt{3}\]
done
clear
View Answer play_arrow
Which of the following is equal to x?
A)
\[{{x}^{\frac{12}{7}}}-{{x}^{\frac{5}{7}}}\]
done
clear
B)
\[\sqrt[12]{{{\left( {{x}^{4}} \right)}^{\frac{1}{3}}}}\]
done
clear
C)
\[{{\left( \sqrt{{{x}^{3}}} \right)}^{\frac{2}{3}}}\]
done
clear
D)
\[{{x}^{\frac{12}{19}}}+{{x}^{\frac{7}{19}}}\]
done
clear
View Answer play_arrow
If \[\frac{1}{x+1}+\frac{1}{x+4}=0\]then x=
A)
\[2\frac{1}{2}\]
done
clear
B)
\[-2\frac{1}{2}\]
done
clear
C)
3
done
clear
D)
\[-\,3\]
done
clear
View Answer play_arrow
If \[\frac{x}{pq}+\frac{x}{qr}+\frac{x}{pr}=p+q+r,\] then x=
A)
\[pqr\]
done
clear
B)
\[\frac{pq}{r}\]
done
clear
C)
\[\frac{p}{qr}\]
done
clear
D)
\[\frac{q}{pr}\]
done
clear
View Answer play_arrow
The equation \[\frac{12x+1}{4}=\frac{13x-1}{5}+3\] is true for
A)
\[x=\frac{1}{8}\]
done
clear
B)
\[x=2\]
done
clear
C)
\[x=5/8\]
done
clear
D)
\[x=\frac{3}{4}\]
done
clear
View Answer play_arrow
If \[\frac{a}{2}+b=0.8\] and \[\frac{7}{a+\frac{b}{2}}=10,\] then (a, b) are
A)
(0.2, 0.4)
done
clear
B)
(0.3, 0.5)
done
clear
C)
(0.4, 0.6)
done
clear
D)
(0.4, 0.5)
done
clear
View Answer play_arrow
A bag contains 50P, 25P and 10P coins in the ratio 2 : 3 : 4 amounting to Rs. 129. Find the number of coins of each type
A)
120, 180, 240
done
clear
B)
180, 150, 200
done
clear
C)
200, 180, 120
done
clear
D)
180, 200, 140
done
clear
View Answer play_arrow
Monthly incomes of two persons are in the ratio 4 : 5 and their monthly expenses are in the ratio 7 : 9. If each saves Rs. 50 per month, their monthly incomes (in rupees) are :
A)
(500, 400)
done
clear
B)
(300, 600)
done
clear
C)
(400, 500)
done
clear
D)
none of these
done
clear
View Answer play_arrow
If \[6x+3y=7xy\] and \[3x+9y=11xy,\] then the value of x and y are
A)
\[\left( 1,\frac{3}{2} \right)\]
done
clear
B)
\[\left( 2,\frac{3}{2} \right)\]
done
clear
C)
\[\left( \frac{3}{2},1 \right)\]
done
clear
D)
\[\left( \frac{3}{2},2 \right)\]
done
clear
View Answer play_arrow
The angle A of a triangle ABC is equal to the sum of the two other angles. Also the ratio of the angle B to angle C is 4 : 5. The three angles are
A)
\[90{}^\circ ,\]\[40{}^\circ ,\]\[50{}^\circ \]
done
clear
B)
\[90{}^\circ ,\]\[55{}^\circ ,\]\[35{}^\circ \]
done
clear
C)
\[90{}^\circ ,\]\[60{}^\circ ,\]\[30{}^\circ \]
done
clear
D)
None of these
done
clear
View Answer play_arrow
If a is a natural number then \[{{a}^{2}}+\frac{1}{{{a}^{2}}}\] is always greater than or equal to
A)
5
done
clear
B)
4
done
clear
C)
3
done
clear
D)
2
done
clear
View Answer play_arrow
If \[\sqrt{0.04\times 0.4\times a}=0.4\times 0.04\times \sqrt{b},\] then value of \[\frac{b}{a}\] is
A)
0.016
done
clear
B)
\[\frac{125}{2}\]
done
clear
C)
0.16
done
clear
D)
None of these.
done
clear
View Answer play_arrow
If 'x' is any natural number, then \[{{x}^{3}}-\frac{1}{{{x}^{3}}^{{}}}\] will always be greater than or equal to
A)
\[x+\frac{1}{x}\]
done
clear
B)
\[3\left( x-\frac{1}{x} \right)\]
done
clear
C)
\[3\left( x+\frac{1}{x} \right)\]
done
clear
D)
\[\left( {{x}^{3}}+\frac{1}{{{x}^{3}}} \right)\]
done
clear
View Answer play_arrow