NEET Sample Paper NEET Sample Test Paper-91

  • question_answer
    In the Bohr's model of hydrogen-like atom the force between the nucleus and the electron is modified as \[F=\frac{{{e}^{2}}}{4\pi {{\varepsilon }_{0}}}\left( \frac{1}{{{r}^{2}}}+\frac{\beta }{{{r}^{3}}} \right),\] where \[\beta \] is a constant. For this atom, the radius of the \[{{n}^{th}}\] orbit in terms of the Bohr radius \[\left( {{a}_{0}}=\frac{{{\varepsilon }_{0}}{{h}^{2}}}{m\pi {{e}^{2}}} \right)\] is:

    A) \[{{r}_{n}}={{a}_{0}}n-\beta \]           

    B)        \[{{r}_{n}}={{a}_{0}}{{n}^{2}}+\beta \]

    C) \[{{r}_{n}}={{a}_{0}}{{n}^{2}}-\beta \]       

    D)        \[{{r}_{n}}={{a}_{0}}n+\beta \]

    Correct Answer: C

    Solution :

    [c] As \[F=\frac{m{{v}^{2}}}{r}=\frac{{{e}^{2}}}{4\pi {{\in }_{0}}}\left( \frac{1}{{{r}^{2}}}+\frac{\beta }{{{r}^{3}}} \right)\] and \[mvr=\frac{nh}{2\pi }\]\[\Rightarrow \]\[v=\frac{nh}{2\pi mr}\] \[\therefore \] \[m{{\left( \frac{nh}{2\pi mr} \right)}^{2}}\times \frac{1}{r}=\frac{{{e}^{2}}}{4\pi {{\in }_{0}}}\left( \frac{1}{{{r}^{2}}}+\frac{\beta }{{{r}^{3}}} \right)\] or, \[\frac{1}{{{r}^{2}}}+\frac{\beta }{{{r}^{3}}}=\frac{m{{n}^{2}}{{h}^{2}}4\pi {{\in }_{0}}}{4{{\pi }^{2}}{{m}^{2}}{{e}^{2}}{{r}^{3}}}\] or, \[\frac{{{a}_{0}}{{n}^{2}}}{{{r}^{3}}}=\frac{1}{{{r}^{2}}}+\frac{\beta }{{{r}^{3}}}\] \[\left( \because {{a}_{0}}=\frac{{{\in }_{0}}{{h}^{2}}}{m\pi {{e}^{2}}}\,\,\text{Given} \right)\]             For \[{{n}^{th}}\]atom             \[\therefore \] \[{{r}_{n}}={{a}_{0}}{{n}^{2}}-\beta \]


You need to login to perform this action.
You will be redirected in 3 sec spinner