A) \[1+2\sin x\sin y\sin z\]
B) \[1-2\sin x\sin y\sin z\]
C) \[1+2\cos x\cos y\cos z\]
D) \[1-2\cos x\cos y\cos z\]
Correct Answer: C
Solution :
As, \[x+y=z\] ?(i) |
Also,\[{{\cos }^{2}}x+{{\cos }^{2}}y+{{\cos }^{2}}z\] |
\[=1+({{\cos }^{2}}x-{{\sin }^{2}}y)+{{\cos }^{2}}z\] |
\[=1+\cos \,\,(x+y)\cos \,\,(x-y)+{{\cos }^{2}}z\] |
\[=1+\cos \,\,(z)\cos \,\,(x-y)+{{\cos }^{2}}z\] [from Eq. (i)] |
\[=1+\cos \,\,z\,\,[cos\,\,(x-y)+\cos \,\,(x+y)]\] |
\[=1+\cos z\left[ 2\cos \frac{(x-y+x+y)}{2}\cos \frac{(x+y-x+y)}{2} \right]\]\[=1+2\cos z\cos x\cos y=1+2\cos x\cos y\cos z\] |
You need to login to perform this action.
You will be redirected in
3 sec