A) 14 cm
B) 15 cm
C) 16 cm
D) 12 cm
Correct Answer: C
Solution :
If \[{{d}_{1}}\]and \[{{d}_{2}}\]be the diagonals of a rhombus, we have Perimeter \[=4\times \text{Side=2}\sqrt{d_{1}^{2}+d_{2}^{2}}\] |
[\[\because \]Side\[=\frac{1}{2}\sqrt{d_{1}^{2}+d_{2}^{2}}\]] |
\[\Rightarrow \] \[40=2\sqrt{{{12}^{2}}+d_{2}^{2}}\] |
\[\Rightarrow \] \[20=\sqrt{144+d_{2}^{2}}\] |
\[\Rightarrow \] \[144+d_{2}^{2}={{20}^{2}}=400\] |
\[\Rightarrow \] \[d_{2}^{2}=400-144=256\] |
\[\therefore \] \[{{d}_{2}}=\sqrt{256}=16\,\,\text{cm}\] |
You need to login to perform this action.
You will be redirected in
3 sec