12th Class Mathematics Sample Paper Mathematics Sample Paper-8

  • question_answer
    If \[f:R\to R\] is a function defined by \[f(x)=2{{x}^{3}}-5,\] then show that the function f is a objective function.
    OR
    Consider \[f:R\to R\] given   by \[f(x)=4x+3.\]Show that f is invertible and find the inverse off.

    Answer:

    Given, \[f:R\to R\] defined by \[f(x)=2{{x}^{3}}-5\]
    For one-one (injective)
    Let        \[f({{x}_{1}})=f({{x}_{2}}),\,\,\forall {{x}_{1}},\,{{x}_{2}}\in R\]
    \[\Rightarrow \]   \[2x_{1}^{3}-5=2x_{2}^{3}-5\]
    \[\Rightarrow \]   \[2x_{1}^{3}=2x_{2}^{3}\]
    \[\Rightarrow \]   \[x_{1}^{3}=x_{2}^{3}\] \[\Rightarrow \] \[{{x}_{1}}={{x}_{2}}\]
    Thus,    \[f({{x}_{1}})=f({{x}_{2}})\] \[\Rightarrow \] \[{{x}_{1}}={{x}_{2}}\]
    So, f is one-one (injective)
    For onto (surjective)
    Let y be an arbitrary element of R (codomain), then
                \[f(x)=y\]
    \[\Rightarrow \]   \[2{{x}^{3}}-5=y\] \[\Rightarrow \] \[2{{x}^{3}}=y+5\]
    \[\Rightarrow \]   \[{{x}^{3}}=\frac{y+5}{2}\] \[\Rightarrow \] \[x={{\left( \frac{y+5}{2} \right)}^{1/3}}\]
    Clearly, \[x\in R\] (domain), \[\forall \,\,y\in R\] (codomain).    
    Thus, for each \[y\in R\] (codomain) there exists    
    \[x={{\left( \frac{y+5}{2} \right)}^{1/3}}\in R\] (domain) such that        
    \[f(x)=f\left[ {{\left( \frac{y+5}{2} \right)}^{1/3}} \right]=2{{\left\{ {{\left( \frac{y+5}{2} \right)}^{1/3}} \right\}}^{3}}-5\]
    \[=2\left[ \left( \frac{y+5}{2} \right) \right]-5=y+5-5=y\]  
    This shows that every element in the codomain has its pre-image in the domain.                   
    So, f is onto (or f s surjective).             
    Thus, f is both one-one and onto (or both injective and subjective). Hence, f is bijective.   
     Hence proved.
    OR
    Given, \[f:R\to R\] defined by \[f(x)=4x+3\]
    For one-one                           
    Let \[{{x}_{1}}\] and \[{{x}_{2}}\] be two arbitrary elements of R,
    Then
                \[f({{x}_{1}})=f({{x}_{2}})\]
    \[\Rightarrow \]   \[4{{x}_{1}}+3=4{{x}_{2}}+3\] \[\Rightarrow \] \[4{{x}_{1}}=4{{x}_{2}}\]
    \[\Rightarrow \]   \[{{x}_{1}}={{x}_{2}}\]
    Thus, \[f({{x}_{1}})=f({{x}_{2}})\] \[\Rightarrow {{x}_{1}}={{x}_{2}},.\] \[\forall {{x}_{1}},\,\,{{x}_{2}}\in R\]
    So, f is one-one.                         
    For onto                                
    Let y be an arbitrary element of R (codomain), then
                \[y=f(x)\,\,\,\,\Rightarrow \,\,\,\,y=4x+3\]
    \[\Rightarrow \]   \[4x=y-3\] \[\Rightarrow \] \[x=\frac{y-3}{4}\]
    Clearly, \[x=\frac{y-3}{4}\in R,\] \[\forall \,y\in R.\]
    Thus, for each \[y\in R\] (codomain), there exists
                \[x=\frac{y-3}{4}\in R\]
    such that f(x) = y
    So, f is onto.
    Hence, f is one-one and onto, so f is invertible.
    Then, there exists \[g:R\to R\] such that
                \[gof={{l}_{R}}\]
    \[\therefore \]      \[gof(x)=x,\] \[\forall \times \in R\]
    \[\Rightarrow \]   \[g[f(x)]=x,\] \[\forall \times \in R\]
    \[\Rightarrow \]   \[g[4x+3]=x\]
    where,   \[y=f(x)=4x+3\]
    \[\Rightarrow \]   \[g(y)=\frac{y-3}{4}={{f}^{-1}}(y)\]  
    Thus, \[{{f}^{-1}}:R\to R\] is defined as
                \[{{f}^{-1}}(x)=\frac{x-3}{4},\] \[\forall \times \in R.\]
    Hence proved.


You need to login to perform this action.
You will be redirected in 3 sec spinner