12th Class Mathematics Sample Paper Mathematics Sample Paper-7

  • question_answer
               
    Find the distance of the point \[(-\,2,\,\,3,\,\,-\,4)\] from the line
    \[\frac{x+2}{3}=\frac{2y+3}{4}=\frac{3z+4}{5}\] measured parallel to the plane \[4x+12y-3z+1=0.\]
    OR
    Find the coordinates of foot of perpendicular drawn from the point
    (0, 2, 3) on the line \[\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}.\] Also, find the length of perpendicular.

    Answer:

    Given point P is \[(-\,2,\,\,3,\,\,-4)\] and equation of line is \[\frac{x+2}{3}=\frac{2y+3}{4}=\frac{3z+4}{5}.\]
                  
     \[4x+12y-3z+1=0\]
    Let \[\frac{x+2}{3}=\frac{2y+3}{4}=\frac{3z+4}{5}=\lambda \]
    Then, any point on the line is
    \[\left( 3\lambda -2,\,\frac{4\lambda -3}{2},\,\,\frac{5\lambda -4}{3} \right).\]
     Let the coordinates of Q be
    \[\left( 3\lambda -2,\,\frac{4\lambda -3}{2},\,\,\frac{5\lambda -4}{3} \right)\]
    DR's of the line PQ are
                \[3\lambda -2+2,\] \[\frac{4\lambda -3}{2}-3,\] \[\frac{5\lambda -4}{3}+4\]
    i.e.        \[3\lambda ,\] \[\frac{4\lambda -3-6}{2},\] \[\frac{5\lambda -4+12}{3}\]
    i.e.        \[3\lambda ,\] \[\frac{4\lambda -9}{2},\] \[\frac{5\lambda +8}{3}\]
    Since, line PQ is parallel to the plane
    \[4x+12y-3z+1=0.\]
    Therefore, normal to the plane is perpendicular to the line.
    \[\therefore \]      \[4(3\lambda )+12\left( \frac{4\lambda -9}{2} \right)-3\left( \frac{5\lambda +8}{3} \right)=0\]
               \[[\because \,\,{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0]\]
    \[\Rightarrow \] \[12\lambda +24\lambda -54-5\lambda -8=0\] \[\Rightarrow \]
    \[31\lambda -62=0\]
    \[\Rightarrow \]   \[31\lambda =62\] \[\Rightarrow \] \[\lambda =2\]
    Now, coordinates of point Q
    \[=\left( 3\times 2-2,\,\,\frac{4\times 2-3}{2},\,\,\frac{5\times 2-4}{3} \right)\]        \[[put\,\,\lambda =2]\]
    \[=\left( 4,\,\,\frac{5}{2},\,\,2 \right)\]
    Now, distance between P and Q,  
    \[PQ=\sqrt{{{(4+2)}^{2}}+{{\left( \frac{5}{2}-3 \right)}^{2}}+{{(2+4)}^{2}}}\]
                \[=\sqrt{{{(6)}^{2}}+{{\left( -\frac{1}{2} \right)}^{2}}+{{(6)}^{2}}}\]
                \[=\sqrt{36+\frac{1}{4}+36}\]
                \[=\sqrt{\frac{144+1+144}{4}}\]
                \[=\sqrt{\frac{289}{4}}=\frac{17}{2}\,\,\text{units}\]
    OR
    Given equation of line is \[\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}\]
               
    Let        \[\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}=\lambda \]
    \[\Rightarrow \]   \[\frac{x+3}{5}=\lambda ,\] \[\frac{y-1}{2}=\lambda ,\] \[\frac{z+4}{3}=\lambda \]
    \[\Rightarrow \]   \[x=5\lambda -3,\] \[y=2\lambda +1,\] \[z=3\lambda -4\]
    Thus, coordinates of any point on the line AB are \[(5\lambda -3,\,\,2\lambda +1,\,\,3\lambda -4).\]
    Let the coordinates of point T be \[(5\lambda -3,\,\,2\lambda +1,\,\,3\lambda -4)\]
    Now, DR's of line is
    \[PT=(5\lambda -3-0,\,\,2\lambda +1-2,\,\,3\lambda -4-3)\]
                \[=(5\lambda -3,\,\,2\lambda -1,\,\,3\lambda -7)\]
    \[\because \] \[PT\bot AB\]
    \[\therefore \] \[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\]
    Where, \[{{a}_{1}}=5\lambda -3,\,\,{{b}_{1}}=2\lambda -1,\,\,{{c}_{1}}=3\lambda -7\]
    and \[{{a}_{2}}=5,\,\,{{b}_{2}}=2,\,\,{{c}_{2}}=3\]
    \[\Rightarrow \]   \[5(5\lambda -3)+2(2\lambda -1)+3(3\lambda -7)=0\]
    \[\Rightarrow \]   \[25\lambda -15+4\lambda -2+9\lambda -21=0\]
    \[\Rightarrow \]   \[38\lambda -38=0\]
    \[\Rightarrow \]   \[38\lambda =38\]
    \[\Rightarrow \]   \[\lambda =1\]  
    \[\therefore \]  The foot of perpendicular,
    \[T\equiv (5\lambda -3,\,\,2\lambda +1,\,\,3\lambda -4)\]
                \[=(2,\,\,3,\,\,-1)\]                       \[[put\,\,\lambda =1]\]
    Also, length of perpendicular
    PT = distance between points P and T,
    \[PT=\sqrt{{{(0-2)}^{2}}+{{(2-3)}^{2}}+{{(3+1)}^{2}}}\]
    \[[\because \,\,\,distance=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}+{{({{z}_{2}}-{{z}_{1}})}^{2}}}]\]
    \[=\sqrt{4+1+16}=\sqrt{21}\,\,\text{units}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner