12th Class Mathematics Sample Paper Mathematics Sample Paper-7

  • question_answer
    Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

    Answer:

    Let H be the height and R be the radius of cylinder inscribed in the cone of height h and radius r. Curved surface area of cylinder             \[S=2\pi RH\]                             ?(i) Since, \[\Delta ABC\sim \Delta ADE,\] \[\frac{AC}{AE}=\frac{BC}{DE}\] \[\Rightarrow \]   \[\frac{h}{h-H}=\frac{r}{R}\] \[\Rightarrow \] \[\frac{h-H}{h}=\frac{R}{r}\] \[\Rightarrow \]\[1-\frac{H}{h}=\frac{R}{r}\]  \[\Rightarrow \] \[1-\frac{R}{r}=\frac{H}{h}\] \[\Rightarrow \] \[H=h\left( 1-\frac{R}{r} \right)\]  ...(ii) On putting the value of H in Eq. (i) we get \[S=2\pi Rh\left( 1-\frac{R}{r} \right)\]\[\Rightarrow \] \[S=2\pi h\left( R-\frac{{{R}^{2}}}{r} \right)\]   ?(iii) On differentiating both sides w.r.t.R, we get             \[\frac{dS}{dR}=2\pi h\left( 1-\frac{2R}{r} \right)\] For maximum or minimum curved surface area, we have \[\frac{dS}{dR}=0\] \[\Rightarrow \] \[2\pi h\left( 1-\frac{2R}{r} \right)=0\] \[\Rightarrow \] \[1-\frac{2R}{r}=0\] \[[\because h\ne 0]\] \[\Rightarrow \]   \[1=\frac{2R}{r}\] \[\Rightarrow \]\[\frac{r}{2}=R\] Now,     \[\frac{{{d}^{2}}S}{d{{R}^{2}}}=\frac{d}{dR}\left\{ 2\pi h\left( 1-\frac{2R}{r} \right) \right\}\]             \[=2\pi h\left( 0-\frac{2}{r} \right)=-\frac{4\pi h}{r}\]        \[\Rightarrow \]   \[{{\left[ \frac{{{d}^{2}}S}{d{{R}^{2}}} \right]}_{R\,\,=\,\frac{r}{2}}}=-\frac{4\pi h}{r}<0\] \[\therefore \] Curved surface is maximum, when Hence proved.


You need to login to perform this action.
You will be redirected in 3 sec spinner