12th Class Mathematics Sample Paper Mathematics Sample Paper-7

  • question_answer
    If \[{{R}_{1}}\] and \[{{R}_{2}}\] be two equivalence relations on a set A, prove that \[{{R}_{1}}\cap {{R}_{2}}\] is also an equivalence relation on A.
    OR
    Let X be a non-empty set and P(X) be its power set. Let '*' be an operation defined on elements    of P(X) by \[A*B=A\cap B,\] \[\forall A,\] \[B\in P(X).\] then,
    (i) Prove that ?*? is a biliary operation in P(X),
    (ii) Is * commutative?
    (iii) Is * associative?
    (iv) Find the identity element in P(X) w.r.t. ?*?.
    (v) If o is another binary operation defined on P(X) as \[AoB=A\cup B,\] then verify that O distributes itself over ?*?.

    Answer:

    Let \[{{R}_{1}}\] and \[{{R}_{2}}\] be two equivalence relations on a set A.
    Then, \[{{R}_{1}}\subseteq A\times A,\] \[{{R}_{2}}\subseteq A\times A\] \[\Rightarrow \]
    \[({{R}_{1}}\cap {{R}_{2}})\subseteq A\times A.\] 
    So, \[({{R}_{1}}\cap {{R}_{2}})\] is a relation on A.
    This relation on A satisfies the following properties.
    (i) Reflexivity
    \[{{R}_{1}}\] is reflexive and \[{{R}_{2}}\] is reflexive
    \[\Rightarrow \] \[(a,\,\,a)\in {{R}_{1}}\] and \[(a,\,\,a)\in {{R}_{2}}\] for all \[a\in A\]
    \[\Rightarrow \] \[(a,\,\,a)\in {{R}_{1}}\cap {{R}_{2}}\] for all \[a\in A\]
    \[\Rightarrow \] \[{{R}_{1}}\cap {{R}_{2}}\] is reflexive.
    (ii) Symmetry
    Let (a, b) be an arbitrary element of \[{{R}_{1}}\cap {{R}_{2}}.\]then,
                \[(a,\,\,b)\in {{R}_{1}}\cap {{R}_{2}}\]
    \[\Rightarrow \]   \[(a,\,\,b)\in R,\] and \[(a,\,\,b)\in {{R}_{2}}\]
    \[\Rightarrow \]   \[(b,\,\,a)\in {{R}_{1}}\] and \[(b,\,\,a)\in {{R}_{2}}\]
    \[[\because \,\,{{R}_{1}}\]is symmetric and \[{{R}_{2}}\] is symmetric]
                \[\Rightarrow \]   \[(b,\,\,a)\in {{R}_{1}}\cap {{R}_{2}}\]
    This shows that \[{{R}_{1}}\cap {{R}_{2}}\] is symmetric
    (iii) Transitivity
                \[(a,\,\,b)\in {{R}_{1}}\cap {{R}_{2}}\,\,and\,\,(b,\,\,c)\in {{R}_{1}}\cap {{R}_{2}}\]
    \[\Rightarrow \]   \[(a,\,\,b)\in {{R}_{1}},\] \[(a,b)\in {{R}_{2}}\] and \[\,(b,\,\,c)\in {{R}_{1}},\]
    \[\,(b,\,\,c)\in {{R}_{2}}\]
    \[\Rightarrow \]   \[\{(a,\,\,b)\in {{R}_{1}},(b,\,\,c)\in {{R}_{1}}\},\]
    and \[\{(a,\,\,b)\in {{R}_{2}},(b,\,\,c)\in {{R}_{2}}\]
    \[\Rightarrow \]   \[\{a,\,\,c\}\in {{R}_{1}}\,\,and\,\,(a,\,\,c)\in {{R}_{2}}\]
                  \[[\because \,\,{{R}_{1}}\]is transitive and \[{{R}_{2}}\] is transitive]
    \[\Rightarrow \]   \[(a,\,\,c)\in {{R}_{1}}\cap {{R}_{2}}\]
    This shows that \[({{R}_{1}}\cap {{R}_{2}})\] is transitive.
    Thus, \[{{R}_{1}}\cap {{R}_{2}}\] is reflexive, symmetric and transitive.
    Hence, \[{{R}_{1}}\cap {{R}_{2}}\] is an equivalence relation.
    OR
    We have, \[A*B=A\cap B,\] \[\forall A,\] \[B\in P(X)\]
    (i) Let \[A,\,\,B\in P(X)\] be any arbitrary elements.
    Then, \[A\subset X\,\,\text{and}\,\,B\subset X\] \[\Rightarrow \] \[A\cap B\subset X\]
    \[\Rightarrow \] \[A\cap B\in P(X)\] \[\Rightarrow \] \[A*B\in P(X)\]
    \[\therefore \] \[*\] is a binary operation in P(X)
    (ii) Let \[A,\,\,B\in P(X)\] be any arbitrary elements. Then,
    \[A*B=A\cap B=B\cap A=B*A\]
    Thus,    \[A*B=B*A\,\,\forall \,\,A,\] \[B\in P(X)\]
    Hence, \[*\] is commutative.              
    (iii) Let \[A,\,\,B,\,\,C\in P(X)\] be any arbitrary elements. Then, \[(A*B)*C=(A\cap B)\cap C\]
                \[=A\cap B\cap C=A\cap (B\cap C)=A*(B*C)\]
    Thus, \[=(A*B)*C=A*(B*C),\]
    \[\forall A,\,\,B,\,\,C\in P(X)\]
    Hence, \[*\] is commutative.              
    (iv) Let, if possible, E be an identity element in P(X).
    Then, \[A*E=A=E*A,\] \[\forall \,\,A\in P(X)\]
    \[\Rightarrow \] \[4x+3y<110,\] \[\forall \,\,A\in P(X)\]
    \[\Rightarrow \] \[A\subset E\,\,\forall \,\,A\in P(X)\]
    This is possible only when E = X.
    Also, \[X\in P(X)\]
    Thus, X is the identity element.         
    (v) Let A be an invertible element of P(X). Then, there exist an element B in P(X) such that
                \[A\cap B=X=B\cap A\]
    This is possible only when A = B = X
    Thus, X is the only invertible element in P(X) and \[{{X}^{-1}}=X\]
    (vi) Let \[A,\,\,B,\,\,C\in P(X)\] be any arbitrary elements.
    To verify  \[Ao(B*C)\text{ }=\text{ (}AoB\text{)}*(AoC)\]
    Consider \[LHS=Ao(B*C)\text{ }=\text{ A}\cup \text{(}B\cap C\text{)}\]
     \[=(A\cup B)\cap (A\cup C)\]
                \[=(AoB)*(AoC)=RHS\]
    Hence, 'o' distributes itself over *.  


You need to login to perform this action.
You will be redirected in 3 sec spinner