12th Class Mathematics Sample Paper Mathematics Sample Paper-6

  • question_answer
    Find the image of line
    \[\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-\,5}\] in the plane \[2x-y+z+3=0.\]
    OR
    Find the distance of the point (3, 4, 5) from the plane \[x+y+z=2\] measured parallel to the line\[2x=y=z\].

    Answer:

    Given equation of the line is
    \[\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-\,5}\]                        ?(i)
    and the given plane is
                \[2x-y+z+3=0\]
    The DR's of line (i) are \[(3,\,\,1,\,\,-5)\] and the DR's of normal to the plane (ii) are \[(2,\,\,-1,\,\,1).\]
                    
    Now, by using \[{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0,\]  we get
                \[(3)(2)+(1)(-1)+(-\,5)(1)=0\]
    \[\Rightarrow \]   \[6-1-5=0\] \[\Rightarrow \] 0 = 0
    Also, putting x =1, y = 3 and z = 4 in LHS of Eq. (ii), we get
    \[LHS=2(1)-(3)+(4)+3=2-3+4+3=6\ne 0\]
    \[\therefore \] The point P(1, 3, 4) of line (i) does not lie in the plane (ii).
    Hence, line (i) is parallel to the plane (ii).
    \[\therefore \] DR's of the line normal to plane (ii) is \[(2,\,\,-1,\,\,1).\]
    Let \[Q(\alpha ,\,\,\beta ,\,\,\gamma )\] be the image of the point P(1, 3, 4).
    Now, equation of line PM passing through (1, 3, 4) and normal to plane (ii) is
                \[\frac{x-1}{2}=\frac{y-3}{-\,1}=\frac{z-4}{1}=\lambda \,\,(say)\]
    \[\Rightarrow \]   \[x=2\lambda +1,\] \[y=-\,\lambda +3,\] \[z=\lambda +4\]
    \[\therefore \] Any point M on the line
                \[=(2\lambda +1),\] \[(-\,\lambda +3),\]\[(\lambda +4)\]     ?(iii)
    Since, the point M lies on the plane (ii).
    \[\therefore \]      \[=2(2\lambda +1)-\,1(-\,\lambda +3)+\lambda +4+3=0\]
    \[\Rightarrow \]   \[4\lambda +2+\lambda -3+\lambda +4+3=0\]
    \[\Rightarrow \]   \[6\lambda +6=0\]        
    \[\Rightarrow \]   \[\lambda =-\,1\]
    On putting the value of \[\lambda \] in Eq. (iii), we get'
    Coordinates of
    \[m=(-\,2+1,\,\,1+3,\,\,-\,1+4)=(-\,1,\,\,4,\,\,3)\]
    Since, M is the mid-point of line PQ.
    \[\therefore \]      \[(-\,1,\,\,4,\,\,3)=\left( \frac{\alpha +1}{2},\,\,\frac{\beta +3}{2},\,\,\frac{\gamma +4}{2} \right)\]
    Then, comparing the corresponding coordinate, we get
                \[\frac{\alpha +1}{2}=-\,1\] \[\Rightarrow \] \[\alpha +1=-\,2\]
    \[\Rightarrow \]   \[\alpha =-\,3,\] \[\frac{\beta +3}{2}=4\] \[\Rightarrow \] \[\beta +3=8\]
    \[\Rightarrow \]   \[\beta =8-3=5\] and \[\frac{\gamma +4}{2}=3\]
    \[\Rightarrow \]   \[\gamma +4=6\] \[\Rightarrow \] \[\gamma =2\]
    \[\therefore \] Coordinates of \[Q=(-\,3,\,\,5,\,\,2)\]
    Hence, the equation of line through Q and parallel to the given line (i) is \[\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-\,5},\] which is the required Image of line (i).
    OR
    Given, point = (3, 4, 5)
    Equation of plane is\[x+y+z=2\]               ...(i)
    and equation of line is \[2x=y=z\]
    \[\Rightarrow \]   \[\frac{x}{1}=\frac{y}{2}=\frac{z}{2}\]                           ?(ii)
    Let the equation of the line passing through the point (3, 4, 5) and parallel to the line (ii) be
                \[\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}=\lambda \,(say)\]     ?(iii)
    Then, any point A on the line (iii) is
    \[A(\lambda +3,\,\,2\lambda +4,\,\,2\lambda +5)\]
    If the point \[A(\lambda +3,\,\,2\lambda +4,\,\,2\lambda +5)\] lies on the plane (i), then \[(\lambda +3)+(2\lambda +4)+(2\lambda +5)=2\]
                 
    \[\Rightarrow \] \[5\lambda +12=2\,\,\,\,\,\Rightarrow \,\,\,\,\,5\lambda =-\,10\,\,\,\,\,\Rightarrow \,\,\,\,\,\lambda =-\,2\]
    On substituting the value of \[\lambda \] in Eq. (iv), we get the coordinates of the point
                \[A(-\,2+3,\,\,-\,4+4,-\,4+5),\] i.e. \[A(1,\,\,0,\,\,1)\]
    Now, distance between the points
    P(3, 4, 5)and A(1, 0, 1)
                \[=\sqrt{{{(3-1)}^{2}}+{{(4-0)}^{2}}+{{(5-1)}^{2}}}\]
                \[=\sqrt{4+16+16}\]
                \[=\sqrt{36}=6\]
    Hence, the required distance of the point P(3, 4, 5)from the plane \[x+y+z=2\] measured parallel to the line \[2x=y=z\] is 6 units.         


You need to login to perform this action.
You will be redirected in 3 sec spinner