12th Class Mathematics Sample Paper Mathematics Sample Paper-4

  • question_answer
            
    For the curve \[y=4{{x}^{3}}-2{{x}^{5}},\] find all the point on the curve at which the tangent passes through the origin,
    OR
    Show that of all the rectangles with a given perimeter, the square has the largest area.

    Answer:

    Given curve is \[y=4{{x}^{3}}-2{{x}^{5}}\]                ?(i)
    Let any point on the curve be \[({{x}_{1}},\,\,{{y}_{1}}).\]
    \[\therefore \]      \[{{y}_{1}}=4x_{1}^{3}-2x_{1}^{5}\]                                   ?(ii)
    On differentiating both sides of Eq. (i), we get
                \[\frac{dy}{dx}=12{{x}^{2}}-10{{x}^{4}}\]
    Equation of tangent at point \[({{x}_{1}},\,\,{{y}_{1}})\] is
                \[y-{{y}_{1}}={{\left( \frac{dy}{dx} \right)}_{({{x}_{1}},\,{{y}_{1}})}}(x-{{x}_{1}})\]
    \[\therefore \]      \[y-{{y}_{1}}=[12{{({{x}_{1}})}^{2}}-10{{({{x}_{1}})}^{4}}](x-{{x}_{1}})\]
    Since, it passes through the origin.
    \[\therefore \]      \[0-{{y}_{1}}=(12x_{1}^{2}-10x_{1}^{4})(0-{{x}_{1}})\]
    \[\Rightarrow \]   \[{{y}_{1}}=(12x_{1}^{2}-10x_{1}^{4}){{x}_{1}}\]             ?(iii)
    From Eqs. (ii) and (iii), we get
                x\[(12x_{1}^{2}-10x_{1}^{4}){{x}_{1}}=4x_{1}^{3}-2x_{1}^{5}\]
    \[\Rightarrow \]   \[2x_{1}^{3}(6-5x_{1}^{2})=2x_{1}^{3}(2-x_{1}^{2})\]
    \[\Rightarrow \] \[2x_{1}^{3}(4-4x_{1}^{2})=0\] \[\Rightarrow \] \[{{x}_{1}}=0\] or \[4-4x_{1}^{2}=0\]
    \[\Rightarrow \]   \[{{x}_{1}}=0\] or \[{{x}_{1}}=\pm 1\]
    Now,     \[{{x}_{1}}=0\] \[\Rightarrow \] \[{{y}_{1}}=0\]
    \[\Rightarrow \] \[{{x}_{1}}=1\] \[\Rightarrow \] \[{{y}_{1}}=4{{(1)}^{3}}-2{{(1)}^{5}}=4-2=2\]
    and       \[{{x}_{1}}=-\,1\] \[\Rightarrow \] \[{{y}_{1}}=4{{(-1)}^{3}}-2{{(-1)}^{5}}\]
                \[=-\,4+2=-\,2\]
    Hence, all points on the curve at which tangent passes through origin are (0, 0), (1, 2) and \[(-\,1,\,\,-2).\]
    OR
    Let x and y be the lengths of two sides of a rectangle. Also, let P denotes the perimeter and A denotes the area of rectangle.
    Given that,        \[P=2(x+y)\]              
                      [\[\therefore \] perimeter of rectangle \[=2(l+b)\]]
    \[\Rightarrow \]   \[P=2x+2y\] \[\Rightarrow \] \[y=\frac{P-2x}{2}\]    ?(i)
    Also, we know that area of rectangle is given by
    A = xy
    \[\Rightarrow \]   \[A=x\left( \frac{P-2x}{2} \right)\]                           [from Eq. (i)]
    \[\Rightarrow \]   \[A=\frac{Px-2{{x}^{2}}}{2}\]
    On differentiating sides w.r.t. x, we get
                \[\frac{dA}{dx}=\frac{P-4x}{2}\]
    Now, for maxima and minima, put \[\frac{dA}{dx}=0\]
    \[\therefore \]      \[\frac{P-4x}{2}=0\] \[\Rightarrow \] P = 4x
    \[\Rightarrow \]   \[2x+2y=4x\]             \[[\because \,\,\,P=2x+2y]\]
    \[\Rightarrow \]   x = y
    \[\because \] x = y, so the rectangle is a square.           
    Also, \[\frac{{{d}^{2}}A}{d{{x}^{2}}}=\frac{d}{dx}\left( \frac{P-4x}{2} \right)=-\frac{4}{2}=-\,2<0\]
    \[\therefore \] A is maximum
    Hence, area is maximum when rectangle is a square.


You need to login to perform this action.
You will be redirected in 3 sec spinner