12th Class Mathematics Sample Paper Mathematics Sample Paper-2

  • question_answer
    Let X be a non-empty set and P(X) be its power set. Let '*' be an operation defined on elements of P(X) by
    \[A*B=A\,\cap B,\] \[\forall A,\] \[B\in P(X).\] Then,
    (i) Prove that '*' is a binary operation in P(X).
    (ii) Prove that '*' is commutative.
    (iii) Prove that '*' is associative.
    (iv) If 'o' is another binary operation defriended on P(X) as \[AoB=A\cup B,\] then verify that 'o' distributes over '*'.
    OR
    Find \[{{f}^{-1}},\] If \[f:R\to (-\,1,\,1)\] is defined by
    \[f(x)=\frac{{{\sqrt{7}}^{x}}-{{\sqrt{7}}^{-x}}}{{{\sqrt{7}}^{x}}+{{\sqrt{7}}^{\,-\,x}}}.\]

    Answer:

    Given, for any non-empty set X, P(X) is the power set, i.e. set of all possible subsets of set X.
    Also, \[A*B=A\,\cap B,\] \[\forall A,\] \[B\in P(X)\]
    (i) For any two elements of P(X), the intersection is again the element P(X).                            
    \[\therefore \] '*' is a binary operation in P(X).
    (ii) For any two sets A and \[B\in P(X),\]
                \[A\cap B=B\cap A\]
    \[\Rightarrow \]   \[A*B=B*A,\] \[\forall \,A,\] \[B\in P(X),\]
    \[\therefore \]      ?*? is commutative.        
    (iii) For any three sets A, B and C,
                \[(A\cap B)\cap C=A\cap (B\cap C)\]
    \[\Rightarrow \]   \[(A*B)*C=A*(B*C),\] \[\forall \,A,\]
    \[B,\,C\in P(X)\]
    \[\therefore \]      '*' is associative.
    (iv) We have, \[AoB=A\cup B\]
    and we want to verify that,
    \[Ao(B*C)=(AoB)*(AoC),\] \[\forall \,A,\,B,\,C\in P(X)\]
    For any three sets A, B and C,     
    \[A\cup (B\cap C)=(A\cup B)\cap (A\cup C)\]
                \[\therefore \]      \[Ao(B*C)=(AoB)*(AoC)\]
    Hence, 'o' distributes over'*'.
    Hence proved.
    OR
    Given a function \[f:R\to (-1,\,\,1),\] defined as
                            \[f(x)=\frac{{{\sqrt{7}}^{x}}-{{\sqrt{7}}^{-x}}}{{{\sqrt{7}}^{x}}+{{\sqrt{7}}^{-x}}}\]
    For \[f\]  to be one-one
                Let \[{{x}_{1}},\] \[{{x}_{2}}\in R\] such that \[f({{x}_{1}})=f({{x}_{2}})\]
    \[\Rightarrow \]   \[\frac{{{\sqrt{7}}^{{{x}_{1}}}}-{{\sqrt{7}}^{-{{x}_{1}}}}}{{{\sqrt{7}}^{{{x}_{1}}}}+{{\sqrt{7}}^{-{{x}_{1}}}}}=\frac{{{\sqrt{7}}^{{{x}_{2}}}}-{{\sqrt{7}}^{-{{x}_{2}}}}}{{{\sqrt{7}}^{{{x}_{2}}}}+{{\sqrt{7}}^{-{{x}_{2}}}}}\]
    \[\Rightarrow \]   \[({{\sqrt{7}}^{{{x}_{1}}}}-{{\sqrt{7}}^{-{{x}_{1}}}})({{\sqrt{7}}^{{{x}_{2}}}}+{{\sqrt{7}}^{-{{x}_{2}}}})\]
    \[=({{\sqrt{7}}^{{{x}_{1}}}}+{{\sqrt{7}}^{-{{x}_{1}}}})({{\sqrt{7}}^{{{x}_{2}}}}-{{\sqrt{7}}^{-{{x}_{2}}}})\]  \[\Rightarrow \]   \[{{\sqrt{7}}^{{{x}_{1}}+{{x}_{2}}}}+{{\sqrt{7}}^{{{x}_{1}}-{{x}_{2}}}}-{{\sqrt{7}}^{{{x}_{2}}-{{x}_{1}}}}-{{\sqrt{7}}^{{{x}_{1}}-{{x}_{2}}}}\]
    \[={{\sqrt{7}}^{{{x}_{1}}+{{x}_{2}}}}-{{\sqrt{7}}^{{{x}_{1}}-{{x}_{2}}}}+{{\sqrt{7}}^{{{x}_{2}}-{{x}_{1}}}}-{{\sqrt{7}}^{{{x}_{1}}-{{x}_{2}}}}\]
    \[\Rightarrow \]   \[2\cdot {{\sqrt{7}}^{{{x}_{1}}-{{x}_{2}}}}=2\cdot {{\sqrt{7}}^{{{x}_{2}}-{{x}_{1}}}}\]
    \[\Rightarrow \]   \[{{\sqrt{7}}^{{{x}_{1}}-{{x}_{2}}}}={{\sqrt{7}}^{{{x}_{2}}-{{x}_{1}}}}\]
    \[\Rightarrow \]   \[{{x}_{1}}-{{x}_{2}}={{x}_{2}}-{{x}_{1}}\]     
    \[[\because \,\,{{a}^{b}}={{a}^{c}}\,\,\,\Rightarrow \,\,\,b=c]\]
                \[\Rightarrow \]   \[2{{x}_{1}}=2{{x}_{2}}\]
                \[\Rightarrow \]   \[{{x}_{1}}={{x}_{2}}\]
                \[\Rightarrow \] f is one-one
    For f to be onto
    Let \[y\in (-\,1,\,\,1)\] be any arbitrary element. Then,
                \[y=f(x)=\frac{{{\sqrt{7}}^{x}}-{{\sqrt{7}}^{-x}}}{{{\sqrt{7}}^{x}}+{{\sqrt{7}}^{-x}}}\]
    \[\Rightarrow \]   \[({{\sqrt{7}}^{x}}+{{\sqrt{7}}^{-x}})y={{\sqrt{7}}^{x}}-{{\sqrt{7}}^{-x}}\]
    \[\Rightarrow \]   \[\left( \frac{{{\sqrt{7}}^{2x}}+1}{{{\sqrt{7}}^{x}}} \right)\,\,y=\frac{{{\sqrt{7}}^{2x}}-1}{{{\sqrt{7}}^{x}}}\]
    \[\Rightarrow \]   \[{{\sqrt{7}}^{2x}}y-{{\sqrt{7}}^{2x}}=-1-y\]
    \[\Rightarrow \]   \[{{\sqrt{7}}^{2x}}(y-1)=-1-y\]
    \[\Rightarrow \]   \[{{\sqrt{7}}^{2x}}=\frac{1+y}{1-y}\] \[\Rightarrow \] \[{{7}^{x}}=\frac{1+y}{1-y}\]
    Taking log on both sides, we get
                \[x{{\log }_{10}}7={{\log }_{10}}\left( \frac{1+y}{1-y} \right)\]
    \[\Rightarrow \]   \[x=\frac{1}{{{\log }_{10}}7}{{\log }_{10}}\left( \frac{1+y}{1-y} \right)\in R,\] for
    \[y\in (-\,1,\,\,1)\] ? (i)
    Thus, for each y e \[y\in (-\,1,\,\,1)\] there exist
    \[x=\frac{1}{{{\log }_{10}}7}{{\log }_{10}}\left( \frac{1+y}{1-y} \right)\in R,\] such that f(x) = y.
    So, f is onto and hence invertible.               
    Also, inverse of f is given by \[{{f}^{-1}}:(-\,1,\,\,1)\to R,\]defined as
    \[{{f}^{-1}}(y)=\frac{1}{{{\log }_{10}}7}{{\log }_{10}}\left( \frac{1+y}{1-y} \right).\]


You need to login to perform this action.
You will be redirected in 3 sec spinner