12th Class Mathematics Sample Paper Mathematics Sample Paper-2

  • question_answer
    If \[\vec{a}=\hat{i}+\hat{j}+\hat{k}\] and \[\vec{b}=\hat{j}-\hat{k},\] then find a vector \[\vec{c}\] such that \[\vec{a}\times \vec{c}=\vec{b}\] and \[\vec{a}\cdot \vec{c}=3.\]
    OR
    If \[\vec{a}\] and \[\vec{b}\] are two non-zero vectors, then prove that \[{{(\vec{a}\times \vec{b})}^{2}}=\left| \begin{matrix}    \vec{a}\cdot \vec{a} & \vec{a}\cdot \vec{b}  \\    \vec{a}\cdot \vec{b} & \vec{b}\cdot \vec{b}  \\ \end{matrix} \right|.\]

    Answer:

    Given, \[\vec{a}=\hat{i}+\hat{j}+\hat{k}\] and \[\vec{b}=\hat{j}-\hat{k}\] 
                Let \[\vec{c}=x\hat{i}+y\hat{j}+z\hat{k}\]
    Then, \[\vec{a}\times \vec{c}=\vec{b}\] \[\Rightarrow \] \[\left| \begin{matrix}    {\hat{i}} & {\hat{j}} & {\hat{k}}  \\    1 & 1 & 1  \\    x & y & z  \\ \end{matrix} \right|=\hat{j}-\hat{k}\]
    \[\Rightarrow \]   \[\hat{i}(z-y)-\hat{j}(z-x)+\hat{k}(y-x)=\hat{j}-\hat{k}\]
    On comparing the coefficients of \[\hat{i},\,\hat{j}\] and \[\hat{k}\]from both sides, we get
                \[z-y=0\]                                    ? (i)
                \[x-z=1\]                                    ? (ii)
    and       \[x-y=1\]                                   ? (iii)
    Also \[\vec{a}\cdot \vec{c}=3\] \[\Rightarrow \] \[(\hat{i}+\hat{j}+\hat{k})\cdot (x\hat{i}+y\hat{j}+z\hat{k})=3\]
    \[\Rightarrow \]   \[x+y+z=3\]                             ? (iv)
     On adding Eqs. (ii) and (iii), we get
                \[2x-y-z=2\]                               ? (v)
    On adding Eqs. (iv) and (v), we get
                \[3x=5\] \[\Rightarrow \] \[x=\frac{5}{3}\]
    Then, from Eq. (iii), \[y=\frac{5}{3}-1=\frac{2}{3}\] and from Eq. (i), \[z=\frac{2}{3}\]
    Hence, \[\vec{c}=\frac{5}{3}\hat{i}+\frac{2}{3}\hat{j}+\frac{2}{3}\hat{k}=\frac{1}{3}(5\hat{i}+2\hat{j}+2\,\hat{k})\]
    OR
    Given, \[\vec{a}\] and \[\vec{b}\] are two non-zero vectors. 
    \[\therefore \]      \[{{(\vec{a}\times \vec{b})}^{2}}=\,\,|\vec{a}\times \vec{b}{{|}^{2}}\]
    \[\Rightarrow \]   \[{{(\vec{a}\times \vec{b})}^{2}}={{\left\{ |\vec{a}|\,|\vec{b}|\,\sin \theta  \right\}}^{2}}\]                  \[[\because \,\,|\hat{n}|\,\,=1]\]
    \[\Rightarrow \]   \[{{(\vec{a}\times \vec{b})}^{2}}=|\vec{a}{{|}^{2}}\,|\vec{b}{{|}^{2}}\,{{\sin }^{2}}\theta \]
    \[\Rightarrow \]   \[{{(\vec{a}\times \vec{b})}^{2}}=\left\{ |\vec{a}{{|}^{2}}\,|\vec{b}{{|}^{2}} \right\}(1-co{{s}^{2}}\theta )\]
    \[\Rightarrow \]   \[{{(\vec{a}\times \vec{b})}^{2}}=\,\,|\vec{a}{{|}^{2}}\,|\vec{b}{{|}^{2}}-|\vec{a}{{|}^{2}}\,|\vec{b}{{|}^{2}}\,{{\cos }^{2}}\theta \]
    \[\Rightarrow \]   \[{{(\vec{a}\times \vec{b})}^{2}}=(\vec{a}\cdot \vec{a})\,(\vec{b}\cdot \vec{b})-(\vec{a}\cdot \vec{b})\,(\vec{a}\cdot \vec{b})\]
    \[[\because \,\,\,\vec{a}\cdot \vec{b}=|\vec{a}|\,|\vec{b}|\,\,\cos \theta ]\]
    \[\Rightarrow \]   \[{{(\vec{a}\times \vec{b})}^{2}}=\left| \begin{matrix}    \vec{a}\cdot \vec{a} & \vec{a}\cdot \vec{b}  \\    \vec{a}\cdot \vec{b} & \vec{b}\cdot \vec{b}  \\ \end{matrix} \right|\]   Hence proved.


You need to login to perform this action.
You will be redirected in 3 sec spinner