12th Class Mathematics Sample Paper Mathematics Sample Paper-15

  • question_answer
    Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes \[\vec{r}\cdot (\hat{i}-\hat{j}+2\hat{k})=5\] and \[\vec{r}\cdot (3\hat{i}+\hat{j}+\hat{k})=6.\]
    OR
    Find the distance of the point \[(1,\,\,-\,2,\,\,3)\] from the plane \[x-y+z=5\] measured parallel to the line
    \[\frac{x}{2}=\frac{y}{3}=\frac{z}{-\,6}.\]

    Answer:

    Consider the required line be parallel to vector \[\overrightarrow{b}\]given by \[\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\,\hat{k}\].
    The position vector of the point (1, 2, 3) is \[\overrightarrow{a}=\hat{i}+2\hat{j}+3\hat{k}\]
    The equation of line passing through (1, 2, 3) and parallel to \[\overrightarrow{b}\]is given by \[\overrightarrow{r}=\overrightarrow{a}+\lambda \vec{b}\]
    \[\therefore \]\[\overrightarrow{r}=(\hat{i}+2\hat{j}+3\hat{k})+\lambda \,\,({{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k})\]     ?(i)
    The equations of the given planes are
    \[\overrightarrow{r}\cdot (\hat{i}-\hat{j}+2\hat{k})=5\]               ?(ii)
    and       \[\overrightarrow{r}\cdot (3\,\hat{i}+\hat{j}+\hat{k})=6\]          ?(iii)
    The line in Eq. (i) and plane in Eq. (ii) are parallel.
    Therefore, the normal to the plane of Eq. (ii) and the given line are perpendicular.
    \[\therefore \]      \[(\hat{i}-\hat{j}+2\hat{k})\cdot \lambda \,\,({{b}_{1}}\,\hat{i}+{{b}_{2}}\,\hat{j}+{{b}_{3}}\,\hat{k})=0\]
    \[\Rightarrow \]\[\lambda \,\,({{b}_{1}}-{{b}_{2}}+2{{b}_{3}})=0\Rightarrow ({{b}_{1}}-{{b}_{2}}+2{{b}_{3}})=0\]     ?(iv)
    Similarly, \[(3\,\hat{i}+\hat{j}+\hat{k})\cdot \lambda \,\,({{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k})=0\]
    \[\Rightarrow \]   \[\lambda \,\,(3{{b}_{1}}+{{b}_{2}}+{{b}_{3}})=0\]             ?(v)
    From Eqs. (iv) and (v), we get
    \[\frac{{{b}_{1}}}{(-\,1)\times 1-1\times 2}=\frac{{{b}_{2}}}{2\times 3-1\times 1}=\frac{{{b}_{3}}}{1\times 1-3\,(-\,1)}\]
    \[\Rightarrow \]               \[\frac{{{b}_{1}}}{-\,3}=\frac{{{b}_{2}}}{5}=\frac{{{b}_{3}}}{4}\]              
    Therefore, the direction ratios of \[\overrightarrow{b}\]are \[-\,3,\]5 and 4.
    \[\therefore \]      \[\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}=-\,3\,\hat{i}+5\hat{j}+4\hat{k}\]
    On putting the value of \[\overrightarrow{b}\]in Eq. (i), we get
    \[\overrightarrow{r}=(\hat{i}+2\hat{j}+3\hat{k})+\lambda \,\,(-\,3\,\hat{i}+5\hat{j}+4\hat{k})\]
    Which is the equation of the required line.
    OR
    Let AB is parallel to the given line.
    \[\therefore \]Equation is\[\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{-\,6}\]
    General point on the line is
    \[B\,(2\lambda +1,\,\,3\lambda -2,\,\,-\,6\lambda +3)\]        ?(i)
                If this point lies on the plane, then
                            \[2\lambda +1-3\lambda +2-6\lambda +3=5\]
                \[\Rightarrow \]               \[\lambda =\frac{1}{7}\]           
               
    On putting the value of \[\lambda \] in Eq. (i), we get
    Point of intersection \[B\,\left( \frac{2}{7}+1,\,\,\frac{3}{7}-2,\,\,-\frac{6}{7}+3 \right)\]
    i.e.\[B=\left( \frac{9}{7},-\frac{11}{7},\,\,\frac{15}{7} \right)\]
    \[\therefore \]Distance,
    \[AB=\sqrt{{{\left( \frac{9}{7}-1 \right)}^{2}}+{{\left( \frac{-\,11}{7}+2 \right)}^{2}}+{{\left( \frac{15}{7}-3 \right)}^{2}}}\]
    \[=\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}=\sqrt{1}=1\,\,unit\]


You need to login to perform this action.
You will be redirected in 3 sec spinner