12th Class Mathematics Sample Paper Mathematics Sample Paper-15

  • question_answer
    Using matrices, solve the following system of equations. \[x+y=5,\text{ }y+z=3\] and  \[z+x=4\]

    Answer:

    The given system of equation can be written in the matrix form as \[AX=B\] Where, \[A=\left[ \begin{matrix}    1 & 1 & 0  \\    0 & 1 & 1  \\    1 & 0 & 1  \\ \end{matrix} \right]B=\left[ \begin{matrix}    5  \\    3  \\    4  \\ \end{matrix} \right]\text{and}\,\,X=\left[ \begin{matrix}    x  \\    y  \\    z  \\ \end{matrix} \right]\] its solution is given by\[X={{A}^{-\,1}}B\]                     ?(i) Now,     \[|A|\,\,=1\,(1-0)-1\,(0-1)+0\] \[=1+1=2\]             \[\Rightarrow \]\[|A|\,\,\ne 0,\]hence unique solution exists. Now, cofactors of A are \[{{A}_{11}}={{(-\,1)}^{1\,\,+\,\,1}}\left| \begin{matrix}    1 & 1  \\    0 & 1  \\ \end{matrix} \right|=1\,(1-0)=1\] \[{{A}_{12}}={{(-\,1)}^{1\,\,+\,\,2}}\left| \begin{matrix}    0 & 1  \\    1 & 1  \\ \end{matrix} \right|=(-\,1)\,\,(0-1)=1\] \[{{A}_{13}}={{(-\,1)}^{1\,\,+\,\,3}}\left| \begin{matrix}    0 & 1  \\    1 & 0  \\ \end{matrix} \right|=1\,(0-1)=-\,1\] \[{{A}_{21}}={{(-\,1)}^{2\,\,+\,\,1}}\left| \begin{matrix}    1 & 0  \\    0 & 1  \\ \end{matrix} \right|=(-\,1)\,\,(1-0)=-\,1\] \[{{A}_{22}}={{(-\,1)}^{2\,\,+\,\,2}}\left| \begin{matrix}    1 & 0  \\    1 & 1  \\ \end{matrix} \right|=1\,\,(1-0)=1\] \[{{A}_{23}}={{(-\,1)}^{2\,\,+\,\,3}}\left| \begin{matrix}    1 & 1  \\    1 & 0  \\ \end{matrix} \right|=(-\,1)\,\,(0-1)=1\] \[{{A}_{31}}={{(-\,1)}^{3\,\,+\,\,1}}\left| \begin{matrix}    1 & 0  \\    1 & 1  \\ \end{matrix} \right|=1\,\,(1-0)=1\] \[{{A}_{32}}={{(-\,1)}^{3\,\,+\,\,2}}\left| \begin{matrix}    1 & 0  \\    0 & 1  \\ \end{matrix} \right|=(-\,1)\,\,(1-0)=-\,1\] \[{{A}_{33}}={{(-\,1)}^{3\,\,+\,\,3}}\left| \begin{matrix}    1 & 1  \\    0 & 1  \\ \end{matrix} \right|=1\,\,(1-0)=1\] \[\therefore \]      \[adj\,(A)={{\left[ \begin{matrix}    {{A}_{11}} & {{A}_{12}} & {{A}_{13}}  \\    {{A}_{21}} & {{A}_{22}} & {{A}_{23}}  \\    {{A}_{31}} & {{A}_{32}} & {{A}_{33}}  \\ \end{matrix} \right]}^{T}}\] \[={{\left[ \begin{matrix}    1 & 1 & -\,1  \\    -\,1 & 1 & 1  \\    1 & -\,1 & 1  \\ \end{matrix} \right]}^{T}}=\left[ \begin{matrix}    1 & -\,1 & 1  \\    1 & 1 & -\,1  \\    -\,1 & 1 & 1  \\ \end{matrix} \right]\] \[\therefore \]\[{{A}^{-\,1}}=\frac{1}{|A|}adj\,(A)=\frac{1}{2}=\left[ \begin{matrix}    1 & -\,1 & 1  \\    1 & 1 & -\,1  \\    -\,1 & 1 & 1  \\ \end{matrix} \right]\] From Eq. (i), we get \[\left[ \begin{matrix}    x  \\    y  \\    z  \\ \end{matrix} \right]=\frac{1}{2}\left[ \begin{matrix}    1 & -\,1 & 1  \\    1 & 1 & -\,1  \\    -\,1 & 1 & 1  \\ \end{matrix} \right]\left[ \begin{matrix}    5  \\    3  \\    4  \\ \end{matrix} \right]\] \[=\frac{1}{2}\left[ \begin{matrix}    5-3+4  \\    5+3-4  \\    -\,5+3+4  \\ \end{matrix} \right]=\frac{1}{2}\left[ \begin{matrix}    6  \\    4  \\    2  \\ \end{matrix} \right]=\left[ \begin{matrix}    3  \\    2  \\    1  \\ \end{matrix} \right]\] \[\therefore \]      \[x=3,\]\[y=2\]and \[z=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner