12th Class Mathematics Sample Paper Mathematics Sample Paper-15

  • question_answer
    Find the coordinates of the point, where the line through \[(3,\,\,-\,4,\,\,-5)\] and \[(2,\,\,-\,3,\,\,1)\] crosses the plane \[2x+y+z=7.\]       
    OR
    Find the foot of perpendicular from the point
    (2, 3, 4) to the line \[\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}.\] Also, find the length of the perpendicular segment.      
     

    Answer:

    The equation of the line joining\[(3,\,\,-\,4,\,\,-\,5)\]and \[(2,\,\,-\,3,\,\,1)\]is
    \[\frac{x-3}{-\,1}=\frac{y+4}{1}=\frac{z+5}{6}=\lambda \,\,(say)\]
    \[\Rightarrow \]   \[x=3-\lambda ,\,\,y=\lambda -4,\,\,z=6\lambda -5\]
    Therefore, any point on the line is of the form
    \[(3-\lambda ,\,\,\lambda -4,\,\,6\lambda -5)\].
    This point lies on the plane\[2x+y+z=7\]
    Therefore,\[2\,(3-\lambda )+(\lambda -4)+(6\lambda -5)=7\]
    \[\Rightarrow \]                           \[5\lambda -3=7\]
    \[\Rightarrow \]                           \[\lambda =2\]
    Hence, the coordinates of the required point are
    \[(3-2,\,\,2-4,\,\,6\times 2)-5\]
    i.e. \[(1,\,\,-2,\,\,7)\].
    OR
    Given,               \[\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}\]           ?(i)
    Let L be the foot of the perpendicular drawn from the point (2, 3, 4) to the given line.
    The coordinate of a general point on line (i) are given by
    \[\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}=\lambda \]
    \[x=4-2\lambda ,\]\[y=6\lambda \]and \[z=1-3\lambda \]
    Let the coordinate of\[L=(4-2\lambda ,\,\,6\lambda ,\,\,1-3\lambda )\]
    \[\therefore \]Direction ratio of PL are proportional to
    \[4-2\lambda -2,\]\[6\lambda -\,3,\]\[1-3\lambda -4\]
    i.e.        \[2-2\lambda ,\]\[6\lambda -\,3,\]\[-3-3\lambda \]
    Direction ratios of the given line are proportional to\[-\,2,\,\,6,\,\,-\,3\].
    \[\therefore \]PL is perpendicular to the given line.
    \[\therefore \]\[(-\,2)\,\,(2-2\pi )+6\,(6\lambda -3)+(-\,3)\,\,(-\,3-3\lambda )=0\]
    \[\Rightarrow -\,4+4\lambda +36\lambda -18+9+9\lambda =0\Rightarrow 49\lambda -13=0\]\[\Rightarrow \]              \[\lambda =\frac{13}{49}\]
    So, the coordinate of
    \[L=\left( 4-2\left( \frac{13}{49} \right),\,\,6\left( \frac{13}{49} \right),\,\,1-3\left( \frac{13}{49} \right) \right)\]
    \[=\left( \frac{170}{49},\,\,\frac{78}{49},\,\,\frac{10}{49} \right)\]
                \[\therefore \]Length of perpendicular
                            \[=\sqrt{{{\left( \frac{170}{49}-2 \right)}^{2}}+{{\left( \frac{78}{49}-3 \right)}^{2}}+{{\left( \frac{10}{49}-4 \right)}^{2}}}\]
    \[=\sqrt{{{\left( \frac{72}{49} \right)}^{2}}+{{\left( -\frac{69}{49} \right)}^{2}}+{{\left( \frac{-\,186}{49} \right)}^{2}}}\]
    \[=\sqrt{\frac{5184}{49\times 49}+\frac{4761}{49\times 49}+\frac{34596}{49\times 49}}=\sqrt{\frac{44541}{49\times 49}}\] \[=\sqrt{\frac{909}{49}}=\frac{3\sqrt{101}}{7}\,\,units\]


You need to login to perform this action.
You will be redirected in 3 sec spinner