12th Class Mathematics Sample Paper Mathematics Sample Paper-13

  • question_answer
    Evaluate \[\int{\left[ \log (\log \,x)+\frac{1}{{{(\log \,x)}^{2}}} \right]}\,dx.\]
    OR
    Evaluate \[\int{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }}\,dx.\]

    Answer:

    We have, \[l=\int{\left[ \log \,(\log x)+\frac{1}{{{(\log x)}^{2}}} \right]dx}\]
    Put       \[{{\log }_{e}}x=z\Rightarrow x={{e}^{z}}\]
    \[\therefore \]      \[dx={{e}^{z}}dz\]
    Now, \[l=\int{{{e}^{z}}\left[ \log z+\frac{1}{{{z}^{2}}} \right]}\,\,dz\]
    \[=\int{{{e}^{z}}\left[ \log z+\frac{1}{z}-\frac{1}{z}+\frac{1}{{{z}^{2}}} \right]}\,\,dz\]
    \[\left[ \text{adding}\,\,\text{and}\,\,\text{subtracting}\frac{1}{z} \right]\]
    \[=\int{{{e}^{z}}\left[ \log z+\frac{1}{z} \right]}\,\,dz-=\int{{{e}^{z}}\left[ \frac{1}{z}+\left( \frac{-\,1}{{{z}^{2}}} \right) \right]\,\,dz}\]
    \[={{e}^{z}}\log z-{{e}^{z}}\cdot \frac{1}{z}+C\]
    \[[\because \int{{{e}^{x}}[f\,(x)+f'(x)]\,dx={{e}^{x}}f\,(x)+C}]\]
    \[={{e}^{z}}\left( \log z-\frac{1}{z} \right)+C\]
    \[=x\,\left[ \log \,(\log x)-\frac{1}{\log x} \right]+C\]           \[[put\,\,z=\log x]\]
    OR
    We have, \[\int{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }}\,dx\]
    \[=\int{\frac{(2{{\cos }^{2}}x-1)-(2{{\cos }^{2}}\alpha -1)}{\cos x-\cos \alpha }}\,dx\]
    \[=\int{\frac{2{{\cos }^{2}}x-2{{\cos }^{2}}\alpha }{\cos x-\cos \alpha }}\,dx\]
    \[=\int{\frac{2\,(\cos x-\cos \alpha )\,\,(\cos x+\cos \alpha )}{(\cos x-\cos \alpha )}}\,dx\]
    \[=2\int{(\cos x+\cos \alpha )}\,dx\]
    \[=2\,(\sin x+x\cos \alpha )+C\]


You need to login to perform this action.
You will be redirected in 3 sec spinner