JEE Main & Advanced Mathematics Definite Integration Question Bank Summation of series by Definite Integration, Gamma function, Leibnitz's rule

  • question_answer
    The points of intersection of                 \[{{F}_{1}}(x)=\int_{2}^{x}{(2t-5)\,dt}\] and \[{{F}_{2}}(x)=\int_{0}^{x}{2t\,dt,}\] are      [IIT Screening]

    A)                 \[\left( \frac{6}{5},\,\frac{36}{25} \right)\]           

    B)                 \[\left( \frac{2}{3},\,\frac{4}{9} \right)\]

    C)                 \[\left( \frac{1}{3},\,\frac{1}{9} \right)\]

    D)                 \[\left( \frac{1}{5},\,\frac{1}{25} \right)\]

    Correct Answer: A

    Solution :

                       Let \[{{F}_{1}}(x)={{y}_{1}}=\int_{2}^{x}{(2t-5)dt}\]and \[{{F}_{2}}(x)={{y}_{2}}=\int_{0}^{x}{2t\,\,dt}\]            Now point of intersection means those point at which \[{{y}_{1}}={{y}_{2}}=y\Rightarrow {{y}_{1}}={{x}^{2}}-5x+6\]and \[{{y}_{2}}={{x}^{2}}\].                                 On solving, we get \[{{x}^{2}}={{x}^{2}}-5x+6\Rightarrow x=\frac{6}{5}\] and \[y={{x}^{2}}=\frac{36}{25}\]. Thus point of intersection is \[\left( \frac{6}{5},\frac{36}{25} \right)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner