JEE Main & Advanced Mathematics Three Dimensional Geometry Question Bank Self Evaluation Test - Three Dimensional Geometry

  • question_answer
    If OABC is a tetrahedron where O is the origin and A, B, C are three other vertices with position vectors \[\overset{\to }{\mathop{a}}\,,\text{ }\overset{\to }{\mathop{b}}\,\] and \[\overset{\to }{\mathop{c}}\,\] respectively, then the centre of sphere circumscribing the tetrahedron is given by the position vector      

    A) \[\frac{{{a}^{2}}(\vec{b}\times \vec{c})+{{b}^{2}}(\vec{c}\times \vec{a})+{{c}^{2}}(\vec{a}\times \vec{b})}{2[\vec{a}\,\vec{b}\,\vec{c}]}\]

    B) \[\frac{{{b}^{2}}(\vec{b}\times \vec{c})+{{a}^{2}}(\vec{c}\times \vec{a})+{{c}^{2}}(\vec{a}\times \vec{b})}{[\vec{a}\,\vec{b}\,\vec{c}]}\]

    C) \[\frac{{{b}^{2}}(\vec{b}\times \vec{c})+{{a}^{2}}(\vec{c}\times \vec{a})+{{c}^{2}}(\vec{a}\times \vec{b})}{2[\vec{a}\,\vec{b}\,\vec{c}]}\]

    D) \[\frac{{{a}^{2}}(\vec{a}\times \vec{b})+{{b}^{2}}(\vec{b}\times \hat{c})+{{c}^{2}}(\vec{c}\times \vec{a})}{2[\vec{a}\,\vec{b}\,\vec{c}]}\]

    Correct Answer: A

    Solution :

    [a] If the centre \['P'\]is with position vector \[\vec{r},\]
    Then \[\vec{a}-\vec{r}=\overrightarrow{PA},\vec{b}-\vec{r}=\overrightarrow{PB},\vec{c}-\vec{r}=\overrightarrow{PC,}\]
    Where \[\left| \overrightarrow{PA} \right|=\left| \overrightarrow{PB} \right|\]
    \[=\left| \overrightarrow{PC} \right|=\left| \overrightarrow{OP} \right|=\left| {\vec{r}} \right|\]
    Consider \[\left| \vec{a}-\vec{r} \right|=\left| {\vec{r}} \right|\]
    \[\Rightarrow (\vec{a}-\vec{r}).(\vec{a}-\vec{r})=\vec{r}.\vec{r}\]
    \[\Rightarrow {{a}^{2}}=-2\vec{a}.\vec{r}+{{r}^{2}}={{r}^{2}}\]
    \[\Rightarrow {{a}^{2}}=2\vec{a}.\vec{r}\] Similarly, \[{{b}^{2}}=2\vec{b}.\vec{r}\] and \[{{c}^{2}}\]
    \[=2\vec{c}.\vec{r}\]
    Since, \[(\vec{b}\times \vec{c}),(\vec{c}\times \vec{a})\] and \[(\vec{a}\times \vec{b})\] are non-coplanar, then
    \[\vec{r}=x(\vec{b}\times \vec{c})+y(\vec{c}\times \vec{a})+z(\vec{a}\times \vec{b})\]
    \[\vec{a}.\,\vec{r}=x\,\vec{a}.(\vec{b}\times c)+y.0+z.0=x[\vec{a}\,\vec{b}\,\vec{c}]\]
    \[\Rightarrow x=\frac{\vec{a}.\vec{r}}{[\vec{a}\,\vec{b}\,\vec{c}]}=\frac{{{a}^{2}}}{2[\vec{a}\,\vec{b}\,\vec{c}]}\]
    Similarly, \[y=\frac{{{b}^{2}}}{2[\vec{a}\,\vec{b}\,\vec{c}]}\] and \[z=\frac{{{c}^{2}}}{2[\vec{a}\,\vec{b}\,\vec{c}]}\]
    Therefore, \[\vec{r}\]
    \[=\frac{{{a}^{2}}(\vec{b}\times \vec{c})+{{b}^{2}}(\vec{c}\times \vec{a})+{{c}^{2}}(\vec{a}\times \vec{b})}{2[\vec{a}\,\vec{b}\,\vec{c}]}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner