JEE Main & Advanced Mathematics Differentiation Question Bank Self Evaluation Test - Limits and Derivatives

  • question_answer
    If [.] denotes the greatest integer function, then \[\underset{n\,\to \,\infty }{\mathop{\lim }}\,\frac{[x]+[2x]+...+[nx]}{{{n}^{2}}}\] is

    A) 0

    B) \[x\]

    C) \[\frac{x}{2}\]

    D) \[\frac{{{x}^{2}}}{2}\]

    Correct Answer: C

    Solution :

    [c] \[nx-1<\left| nx \right|\le nx.\] Putting \[n=1,2,3,...,n\] and adding them, \[x\Sigma n-n<\sum [nx]\le x\Sigma n\] \[\therefore x.\frac{\Sigma n}{{{n}^{2}}}-\frac{1}{n}<\frac{\Sigma [nx]}{{{n}^{2}}}\le x.\frac{\Sigma n}{{{n}^{2}}}\]                      ? (i) Now, \[\underset{x\to \infty }{\mathop{\lim }}\,\left\{ x.\frac{\Sigma n}{{{n}^{2}}}-\frac{1}{n} \right\}=x.\underset{n\to \infty }{\mathop{\lim }}\,\frac{\Sigma n}{{{n}^{2}}}-\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}=\frac{x}{2}\] As the two limits are equal, by (i) \[\underset{n\to \infty }{\mathop{\lim }}\,\frac{\Sigma [nx]}{{{n}^{2}}}=\frac{x}{2}.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner