JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\int\limits_{-\pi /2}^{\pi /2}{\frac{ln\,(\cos x)}{1+{{e}^{x}}.{{e}^{\sin \,\,x}}}dx=}\]

    A) \[-2\pi \,\,ln\,\,2\]

    B) \[-\frac{\pi }{4}ln\,\,2\]

    C) \[-\pi \,\,ln\,\,2\]

    D) \[-\frac{\pi }{2}ln\,\,2\]

    Correct Answer: D

    Solution :

    [d] \[I=\int\limits_{-\pi /2}^{\pi /2}{\frac{ln\,\,(\cos \,\,x)}{1+{{e}^{x}}.{{e}^{\sin x}}}dx}\] \[=\int\limits_{-\pi /2}^{\pi /2}{\frac{ln\,\,(\cos \,\,x)}{1+{{e}^{-(x+\sin \,\,x)}}}dx}\] \[\Rightarrow 2I=\int\limits_{-\pi /2}^{\pi /2}{\frac{ln(\cos x)}{1+{{e}^{x+\sin x}}}(1+{{e}^{(x+\sin \,\,x)}})dx}\] \[=\int\limits_{-\pi /2}^{\pi /2}{ln(\cos \,\,x)}dx\]\[2I=2\int\limits_{0}^{\pi /2}{ln(\cos \,\,x)}dx\Rightarrow I=-\frac{\pi }{2}ln\,\,2\]


You need to login to perform this action.
You will be redirected in 3 sec spinner