JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If \[{{I}_{1}}=\int\limits_{0}^{\frac{\pi }{2}}{\cos (\sin \,\,x)dx;{{I}_{2}}=\int\limits_{0}^{\frac{\pi }{2}}{\sin (\cos \,\,x)dx}}\] and \[{{I}_{3}}=\int\limits_{0}^{\frac{\pi }{2}}{\cos x\,\,dx,}\] then

    A) \[{{I}_{1}}>{{I}_{3}}>{{I}_{2}}\]

    B) \[{{I}_{3}}>{{I}_{1}}>{{I}_{2}}\]

    C) \[{{I}_{1}}>{{I}_{2}}>{{I}_{3}}\]

    D) \[{{I}_{3}}>{{I}_{2}}>{{I}_{1}}\]

    Correct Answer: A

    Solution :

    [a] \[{{I}_{1}}=\int\limits_{0}^{\frac{\pi }{2}}{\cos (\sin \,\,x)dx}\]
    \[{{I}_{2}}=\int\limits_{0}^{\frac{\pi }{2}}{sin(cos\,\,x)dx}\]
    \[{{I}_{3}}=\int\limits_{0}^{\frac{\pi }{2}}{cos\,x\,dx}\]
    Let \[{{f}_{1}}(x)=\cos (\sin \,\,x),{{f}_{2}}(x)=\sin (\cos \,\,x),\]
    \[{{f}_{3}}(x)=\cos \,\,x\]
    If \[x>0\], then \[\sin x<x\]
    \[\Rightarrow \] for \[0<x<\frac{\pi }{2},\sin (\cos \,\,x)<\cos \,\,x\]
    Also, \[0<x<\frac{\pi }{2}\] then \[\sin x<x\]
    \[\Rightarrow \cos (\sin \,\,x)>\cos \,\,x\]
    \[\therefore \cos (\sin \,\,x)>\cos \,\,x>\sin (\cos \,\,x)\] if \[0<x<\frac{\pi }{2}\]
    \[\therefore {{I}_{1}}>{{I}_{3}}>{{I}_{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner