JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    The value of \[\int_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}\,\,dt}+\int_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}dt}\] is

    A) \[\pi \]

    B) \[\frac{\pi }{2}\]

    C) \[\frac{\pi }{4}\]

    D) 1

    Correct Answer: C

    Solution :

    [c] Let \[{{I}_{1}}=\int_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}\,\,dt}\]
    Put \[t={{\sin }^{2}}u\Rightarrow dt=2\sin \,\,u\,\,\cos \,\,udu\]
    \[\Rightarrow dt=\sin \,\,2\,\,udu\]
    \[\therefore \,\,\,\,\,{{I}_{1}}=\int_{0}^{x}{u\,\,\sin \,\,2udu}\]
    Let \[{{I}_{2}}=\int_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}\,dt}\]
                Put \[t={{\cos }^{2}}v\Rightarrow dt=-2\cos \,\,v\,\,sin\,\,vdv\]
                \[\Rightarrow dt=-\sin \,\,2\,vdv\]
    \[\therefore {{I}_{2}}=\int_{\frac{\pi }{2}}^{x}{v}(-sin2v)dv=-\int_{\frac{\pi }{2}}^{x}{v\sin 2\,vdv}\]
    \[=-\int_{\frac{\pi }{2}}^{x}{u\,\,\sin \,\,2udu}\] [change of variable]
                \[\therefore I={{I}_{1}}+{{I}_{2}}=\int_{0}^{x}{u\sin \,\,2udu-\int_{\frac{\pi }{2}}^{x}{u\sin \,\,2\,udu}}\]
    \[=\int\limits_{0}^{\frac{\pi }{2}}{u\,\,\sin \,\,2udu+\int\limits_{\frac{\pi }{2}}^{x}{u\,\,\sin \,\,2udu-\int\limits_{\frac{\pi }{2}}^{x}{u\,\,\sin \,\,2\,\,udu}}}\]\[=\int\limits_{0}^{\frac{\pi }{2}}{u\sin 2\,\,udu}=\frac{\pi }{4}\]   [Integrate by parts]


You need to login to perform this action.
You will be redirected in 3 sec spinner