JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    If \[\int{f(x)\sin x\cos x\,\,dx=\frac{1}{2({{b}^{2}}-{{a}^{2}})}{{\log }_{e}}(f(x))+A,}\]\[b\ne \pm a,\] then \[{{\{f(x)\}}^{-1}}\] is equal to

    A) \[{{a}^{2}}{{\sin }^{2}}x+{{b}^{2}}{{\cos }^{2}}x+C\]

    B) \[{{a}^{2}}{{\sin }^{2}}x-{{b}^{2}}{{\cos }^{2}}x+C\]

    C) \[{{a}^{2}}{{\cos }^{2}}x+{{b}^{2}}si{{n}^{2}}x+C\]

    D) \[{{a}^{2}}{{\cos }^{2}}x-{{b}^{2}}si{{n}^{2}}x+C\]

    Correct Answer: A

    Solution :

    [a] \[\int{f(x)\sin \,\,x\,\,\cos \,\,x\,\,dx=\frac{1}{2({{b}^{2}}-{{a}^{2}})}\log (f(x))+C}\] Therefore \[f(x)\sin x\cos x=\frac{1}{2({{b}^{2}}-{{a}^{2}})}.\frac{1}{f(x)}f'(x)\] [by differentiating both the sides] \[\Rightarrow 2({{b}^{2}}-{{a}^{2}})\sin \,\,x\,\,\cos \,\,x=\frac{f'(x)}{{{\left( f(x) \right)}^{2}}}\] \[\int{(2{{b}^{2}}\sin x\cos x-2{{a}^{2}}\sin x\cos x)dx=\int{\frac{f'(x)}{{{\left( f(x) \right)}^{2}}}dx}}\][by integrating both the sides] \[\Rightarrow -{{b}^{2}}{{\cos }^{2}}x-{{a}^{2}}{{\sin }^{2}}x-C=-\frac{1}{f(x)}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner